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Abstract 

Background  Wildlife species adapted to the Afro-alpine highlands are vulnerable to loss of habitat due to global 
warming accompanying potential upward shifts and elevational range contractions of their preferred habitats. Under-
standing the trends in the shift of suitable habitats of endemic taxa is key to planning the conservation and manage-
ment of species. Therefore, this study aimed to model the distribution of Menelik’s bushbuck, a spiral-horned antelope 
endemic to Ethiopian highlands across the past (Last Glacial Maximum, and Mid-Holocene), present, and future.

Methods  We performed the ensemble modelling implemented in the “sdm” R package using 6 modelling tech-
niques (MaxEnt, Generalized Linear Model, Generalized Additive Model, Random Forest, Boosted Regression Tree, 
and Multivariate Adaptive Regression Splines). We combined 248 occurrence points of Menelik’s bushbuck with 12 
climatic, topographic, and anthropogenic variables. We selected these variables from originally 24 variables using 
the VIF step procedure to avoid highly correlated predictor variables for the final model run.

Results  The performance of the ensemble model was excellent having AUC = 0.97 and TSS = 0.88 values. Bio6 
(minimum temperature of the coldest month) contributed most to the distribution of Menelik’s bushbuck followed 
by bio12 (annual precipitation) and elevation. The model projection estimated the suitable habitat of Menelik’s bush-
buck steadily decreases with increasing representative concentration pathways (RCP) scenarios and projection years. 
The current suitable habitat of this species is estimated to be 25,546 km2 whereas the Mid-Holocene and the Last 
Glacial Maximum potential habitats was about 60,282.24 km2 and 33,652 km2 respectively. The magnitude of the loss 
of suitable habitats of Menelik’s bushbuck will be highest in 2050 and 2070 under RCP 8.5 climate scenarios showing 
the loss in the currently suitable habitats of this species is over 95.1% and 99.8% respectively.

Conclusion  Melelik’s bushbuck has lost suitable habitat since the LGM and the loss will be greatest in the future 
due to climate change and land use change. The sharp decline of the suitable habitat will greatly threaten the future 
survival of the species. Our modelling can assist in identifying potential refuge areas for the species to assist in its 
preservation.
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Introduction
Species living at high altitudes will be most likely par-
ticularly affected by anthropogenic climate change due 
to rapid upward shifts of suitable habitats that might lead 
to mountain top extinctions [1]. This is not only a risk 
in the mountains of higher latitudes but also for high-
altitude species in tropical mountains [2–5]. Ethiopia 
holds several high-altitude species or subspecies that are 
endemic to the country such as the Ethiopian long-eared 
bat (Plecotus balensis), gelada (Theropithecus gelada), 
Bale monkey (Chlorocebus djamdjamensis), Ethiopian 
wolf (Canis simensis), Mountain nyala (Tragelaphus bux-
toni), Walia ibex (Capra walie), and Menelik’s bushbuck 
(Tragelaphus sylvaticus meneliki) [6]. Recent studies on 
the Ethiopian wolf [7], the Ethiopian long-eared bat [8] 
and the gelada [9] applying species distribution or eco-
logical niche models stressed the need for taking uphill 
movement of these species into account for conserva-
tion planning. However, these studies also showed that 
human pressure in mountain ranges, e.g., the expansion 
of agriculture, poses an additional risk to high-altitude 
species in Ethiopia [10–15]. In combination with the 
effects of climate change, this can lead to the extinction 
of the endemics and other high-altitude taxa.

Among the high-altitude species of Ethiopia, Menelik’s 
bushbuck is probably the most widely distributed taxon 
[16]. It has been reported to inhabit various habitats 
such as forested areas with thick undergrowth but also 
relatively open habitats like Erica scrubland and Afro-
alpine grassland [18–20]. According to Yalden et al. [16] 
this subspecies occupies a limited and disjunct range in 
the Chercher, Arsi and Bale Mountains, the mountains 
of western Shoa and areas of high ground in the prov-
ince of Illubabor, but not, e.g., in the Simien Mountains. 
Recent surveys, however, have confirmed the taxon in 
several more mountainous areas, including the Simien 
Mountains National Park [21, 36]. At lower elevations 
in Northern, Southern, and Western Ethiopia a second 
bushbuck taxon occurs, the Ethiopian bushbuck (Trage-
laphus scriptus decula Rüppell, 1835) [22]. However, the 
taxonomic status of both Ethiopian Tragelaphus taxa, 
their distribution boundaries, and whether gene flow 
occurs are not clear.

To understand the distribution of Menelik’s bushbuck 
in Ethiopian highlands, species distribution models 
(SDMs) can be used for modelling the habitat suitabil-
ity of the target species in the study area as these mod-
els are popular in ecology and used globally to address 

fundamental questions like where a species is likely to 
be found, what factors are involved in the distribution of 
a species, and what challenges climate change imposes 
on different species. The advancement in data science 
has resulted in the development of a number of model-
ling algorithms, which are being integrated and used to 
develop more accurate maps and provide advanced deci-
sion-making for the conservation of endangered species 
globally [23–26]. Ensemble modelling, by combining out-
puts from multiple SDMs, offers a more comprehensive 
and reliable view of species distributions. It allows for 
better understanding of the relationships between spe-
cies and their environment, making it particularly valu-
able tool in ecology and conservation biology. The ability 
to integrate and compare different model outputs has 
made ensemble modelling a preferred choice for pre-
dicting the potential impacts of climate change, land use 
change, or other environmental changes on species dis-
tribution patterns [27]. Consequently, ensemble model-
ling has become instrumental in formulating effective 
conservation strategies and managing biodiversity under 
global change scenarios [28].

Therefore, in this study, we performed ensemble mod-
elling using environmental variables across the entire 
range of Menelik’s bushbuck to: (1) predict past, current 
and future distributions of suitable habitat; (2) identify 
the climatic factors key to the distribution of the species, 
and (3) detect the change in suitability area of Menelik’s 
bushbuck under different climate change scenarios.

The results of our SDMs may help to understand the 
shifts in distribution across time, and to determine the 
origin and historical dispersal of the target species. We 
hypothesis that the suitable habitats and distribution of 
Menelik’s bushbuck in the highlands of Ethiopia are influ-
enced by climate, anthropogenic (land use) and other 
topographic variables. We believe that the precipitation 
(Annual Precipitation), temperature (Min Temperature 
of Coldest Month), topographic variables (elevation and 
slope) and land cover are positively related to the pre-
dicted habitat suitability of the target species.

Materials and methods
Study area
Ethiopia is located within the tropics (3° and 15ºN lati-
tude and 33° and 48ºE longitude). It is the center of the 
East African region that has eleven Afrotropical ecore-
gions and has been designated a Global 200, an ecore-
gion of global importance for biodiversity conservation 
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[55]. Our study area comprises the complete Ethiopian 
highlands above the 2000  m contour line (Fig.  1). The 
Ethiopian highlands belong to Eastern Afromontane and 
Horn of Africa biodiversity hotspots [29]. Beside the high 
altitude endemic mammals [30, 83] they harbour several 
other endemic vertebrate and plant species [31–33].

The climate in the highlands is characterized by a rainy 
season from June to September, and a dry season from 
October to April. Rainfall generally increases from north 
to south and east to west, with an average annual rainfall 
of 600 mm in the northeast and 2,000 mm in the south-
west [34]. In combination with its topography this climate 
variability is responsible for the wide range of vegetation 
types across the country, which includes arid and semi-
arid Acacia woodland and Afro-alpine vegetation.

The highlands are the main area of agriculture and 
human settlement in Ethiopia with 88% of the human 
population, 95% of the agricultural area and about 75% of 
the livestock of Ethiopia found in the highlands [35]. The 
high human population lead to large-scale conversion of 
the natural habitat and the impoverishment of natural 
ecosystems, including deforestation and biodiversity loss.

Data collection
Species occurrence data
We assembled a total of 248 occurrence points for Mene-
lik’s bushbuck (Table, S1) from field surveys between 
December 2018 and July 2023. At each observation site, 
a minimum distance of 1 km was set between transects 
to avoid an overlap of sampling points in most highlands 
of northern, central and south eastern Ethiopia where 

the target species is found (Fig. 1). We used Global Posi-
tioning System (GPS) to record the coordinates of direct 
observations of the respective presence points. We also 
used binoculars to spot the target species from a dis-
tance. We filtered these data by removing duplicates. In 
cases where we detected multiple occurrence points 
within a 1  km × 1  km grid cell, we used only one point 
per cell. Finally, we retained 132 occurrence points for 
our modelling (Fig. 1). These points lay between 2000 to 
3800 m asl with most localities above 2800 m asl. A study 
by Hernandez et al. [56] indicated that high model accu-
racy was observed using several modelling techniques for 
models based on samples as small as 5, 10 and 25 com-
pared to models based on 100 samples.

Environmental variables
We examined 24 climate, topographical and anthropo-
genic variables (Table  1). We downloaded data of the 
19 bioclimatic variables for the current (1950 – 2000), 
future, and Paleo climate data for the last glacial maxi-
mum (LGM), and the mid-Holocene from the World-
Clim version 1.4 (https://​www.​world​clim.​org; accessed 
June 2023) with a spatial resolution of 2.5 arc-minutes 
(about 4.5 X 4.5 km) at the equator.

Topographical variables such as elevation and slope 
can be of importance in high-altitude species. We there-
fore used digital elevation model data, with a resolution 
of 30  m (SRTM 1 Arc-Second Global) from the United 
States Geological Survey (https://​earth​explo​rer.​usgs.​
gov/). We computed slope and aspect from digital eleva-
tion using ArcMap10.8.2. Additionally, we downloaded 

Fig. 1  Topographic map of Ethiopia and occurrence points of Menelik’s bushbuck collected between 2018 and 2023

https://www.worldclim.org
https://earthexplorer.usgs.gov/
https://earthexplorer.usgs.gov/
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solar radiation from www.​world​clim.​org as standardized 
tiff formats [23, 37] and it is theoretically proportional to 
the amount of direct solar radiation striking arbitrarily 
oriented earth’s surface as a function of its aspect, slope 
and latitude [38].

We also obtained land cover data from the Copernicus 
Climate Change Service (https://​cds.​clima​te.​Coper​nicus.​
eu/). Land cover data in the current habitat suitability 
prediction was used as constant in the past and future 
projection due to lack of past and future dataset for such 
variable.

In 2008, many climate modelling groups worldwide 
come to an agreement to develop the new global climate 
models (GCMs) which aim to enhance an understanding 
of past and future climate changes and provide projec-
tions of future climate change for the analysis of possible 
consequences [78]. These developments are currently in 
the fifth phase of the Coupled Model Intercomparison 
Project (CMIP5). The four Representative Concentra-
tion Pathways (RCPs) of CMIP5 can be used to facilitate 
the assessment of potential climate change impacts and 
provide useful information for possible mitigation and 
adaptation strategies [78, 79]. RCPs were produced based 

on comprehensive data on climate change forcing agents 
such as future concentration and emission of greenhouse 
gases (GHG), and land cover, to represent a projected 
radiative forcing level of all major forcing components by 
the end of 2100 [79].

The commonly used four RCPs (RCP2.6, 4.5, 6.0 and 
8.5) indicate varying forcing levels from very low to 
high. RCP2.6 can be considered a low emission sce-
nario whereas RCP8.5 represents a very high scenario 
due to increased GHG emission from high fossil fuel/
coal consumption to support rapid population growth. 
RCP4.5 and RCP6.0 are a representative of intermedi-
ate/medium mitigation scenarios [79]. In this study, we 
used the intermediate greenhouse gas scenario (RCP 
4.5) and the highest emission scenario (RCP 8.5) for the 
years 2050 and 2070 from the fifth Report of the Inter-
governmental Panel on Climate Change [81].

In the future, the on-going emission of greenhouse 
gases will likely cause an increase in frequency, sever-
ity and magnitude of extreme climate-related events 
[80], posing ever greater threats to the biodiversity in 
east Africa. A slight increase in warming can have a sig-
nificant impact on tropical species that have a narrow 

Table 1  Environmental variables (variables marked x are those that we selected for our modelling approach)

Code Variables Units VIF values Selected

Bio1 Annual Mean Temperature °C

Bio2 Mean Diurnal Range [Mean of monthly (max temp – min temp)] °C 5.28 x

Bio3 Isothermality (P2/P7)*(100) - 2.68 x

Bio4 Temperature Seasonality (standard deviation*100) C of V

Bio5 Max Temperature of Warmest Month °C

Bio6 Min Temperature of Coldest Month °C 6.67 x

Bio7 Temperature Annual Range (P5-P6) °C

Bio8 Mean Temperature of Wettest Quarter °C

Bio9 Mean Temperature of Driest Quarter °C

Bio10 Mean Temperature of Warmest Quarter °C

Bio11 Mean Temperature of Coldest Quarter °C

Bio12 Annual Precipitation mm 6.16 x

Bio13 Precipitation of Wettest Month mm

Bio14 Precipitation of Driest Month mm

Bio15 Precipitation of Seasonality (Coefficient of Variation) - 4.20 x

Bio16 Precipitation of Wettest Quarter mm

Bio17 Precipitation of Driest Quarter mm

Bio18 Precipitation of Warmest Quarter mm 1.80 x

Bio19 Precipitation of Coldest Quarter mm 1.59 x

aspect Aspect degree 1.35 x

elev Elevation m 8.83 x

Land cover Land cover - 1.36 x

slope Slope % 1.31 x

Solar rad Solar radiation - 3.61 x

http://www.worldclim.org
https://cds.climate.Copernicus.eu/
https://cds.climate.Copernicus.eu/
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thermal-tolerance range than that of temperate species 
[82].

To model the past suitable habitat of Menelik’s bush-
buck, we used two time windows: (1) The last glacial 
maximum (LGM), about 22,000 years ago, when the air 
temperature was about 6 °C lower than today [84], and 
(2) the mid-Holocene period, about 6,000  years ago, 
when air temperature was similar to the present [39].

Data analysis
Collinearity analysis of predictor variables
Multicollinearity analysis is a critical procedure in SDMs, 
which addresses the issue of collinearity, or the high cor-
relation among predictor variables [40]. It aims to identify 
and mitigate the influence of interrelated variables that 
may otherwise confound the results and interpretations 
of a model, thereby ensuring robust and credible model 
outcomes. Within the context of SDMs multicollinear-
ity can lead to an overestimation or underestimation of 
the effects of different environmental variables on species 
distributions [41]. This can mislead the interpretation of 
species-environment relationships and can undermine 
the predictive performance of the model. Hence, a care-
ful multicollinearity analysis is fundamental to the suc-
cessful application of species distribution modelling.

We performed a multicollinearity analysis using the 
Variance Inflation Factor (VIF) rule. Variables with a VIF 
exceeding 10 are considered highly collinear and thus 
should be omitted from the model [42]. The stepwise 
multicollinearity analysis conducted in this study lever-
aged the VIF step function using the Uncertainty Analy-
sis for Species Distribution Models (USDM) package in 
R [43]. The outcome of VIF step function is a model with 
multicollinearity significantly reduced, thereby enhanc-
ing the interpretability and credibility of the model 
results. From the original 24 variables, we considered 12 
weakly correlated variables for further analyses of Mene-
lik’s bushbuck ensemble modelling (Table 1).

Background data
It has been suggested that when modelling species distri-
bution using presence-only data, the selection of back-
ground data approach is as important as the selection 
of modelling method [59]. The background or pseudo-
absence approach has been found to improve model per-
formances in the studies of various species and across 
geographic areas [59].

In this study, we only used presence or occurrence data. 
The back ground or pseudo-absence data were generated 
using “gRandom” which generates points randomly over 
geographic space by removing points located in present 
sites [44]. Additionally, 500 background points were gen-
erated from 132 occurrence points of Menelik’s bushbuck 

representing an error-free and adequately compiled data. 
Spatial autocorrelation in species occurrences interferes 
with independence between the test and training data 
sets if the division of the training and test data is executed 
randomly [45]. Thus, the Spatially Rarefy Occurrence 
Data Tool in the SDM toolbox2.5 of ArcGIS 10.8.1 was 
employed to filter multiple occurrence points to reduce 
to a single point [46] and all points were mapped using 
ArcGIS 10.8.1 for observation and check the accuracy of 
occurrences. The occurrence records were projected on 
the study area map to ensure that they were within the 
targeted region.

Species distribution modelling
We used an ensemble of species distribution model 
algorithms to minimise the uncertainty associated with 
single modelling techniques [27]. An ensemble model 
combines the strengths of several SDM approaches while 
minimizing the weakness of any particular model [47, 
48]. We applied an ensemble of six models implemented 
in the ‘sdm’ package [44] in R version 4.3.2 [85]. The 
models include three machine learning algorithms and 
three regression methods. We selected Maxent, Boosted 
Regression Tree (BRT), Random Forest (RF), general-
ized additive model (GAM), Generalized Linear Models 
(GLM) and Multivariate Adaptive Regression Splines 
(MARS). These modelling algorithms are among the 
most commonly employed for species distribution mod-
els, depend on the level of complexity, appropriateness, 
predictive power, and capability to incorporate presence-
only data because of limited access to absence data [57, 
58]. The algorithms were combined into one ensemble 
model through by applying a weighted mean approach 
using true skill statistic (TSS) [49].

For fitting the models together, subsampling and boot-
strapping replication methods were used. Ten replica-
tions were done for the model object meaning five for 
each replication method. After preparing the model 
object we used the “predict” function to predict the dis-
tribution of the study species under the past, current, and 
future conditions using the selected predictor variables. 
Prediction output maps were also ensembled together 
using an ensemble function. The ensemble process was 
done by using a weighted averaging method by taking the 
value of True skill statistics (TSS) where sensitivity and 
specificity is maximized as a threshold.

Performance statistics
The value of sensitivity against the random sample of 
background locations is sufficient to define a Receiver 
Operating Curve (ROC) [50, 51]. The value of AUC 
ranges from 0.5 (random prediction) to 1 (perfect accu-
racy). According to Merckx et  al. [17] AUC values are 
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interpreted as follows 0.6—0.7 as poor, 0.7—0.8 as aver-
age, 0.8—0.9 as good, and 0.9—1 as excellent.

Although the Kappa statistic is the most widely used, 
several studies have criticized it for being inherently 
dependent on prevalence. The TSS corrects for this 
dependence while still keeping all the advantages of 
kappa [52]. Both Kappa and TSS are threshold-depend-
ent measures of model accuracy [53] and their values 
ranged from − 1 to + 1, where + 1 indicates perfect agree-
ment between predictions and observations, and values 
of 0 or less indicate agreement no better than random 
classification [53]. The following ranges were used to 
interpret Kappa and TSS statistics: values < 0.4 were poor, 
0.4—0.8 useful, and > 0.8 good to excellent.

Examining the impact of climate change on species 
distributions
The assessment of the impact of climate change on the 
species distributions was performed by comparing the 
potential distribution areas in the current climate condi-
tions with the future potential distribution areas based 
on a species’ current climate preferences and future cli-
matic conditions. Areas of habitat gain and habitat loss 
were calculated in Arc Map 10.8.2 using the ensemble 
output maps. We classified the pixels into two categories 
based on the TSS threshold values as suitable or unsuit-
able habitats. The TSS threshold value for this study was 
found to be 0.6.

Quantifying and visualizing changes in range shift
Changes in range shift were visualized by producing 
maps using occurrence probabilities and predicted pres-
ence absence data. To quantify and visualize the range 
shift using occurrence probabilities, we used the worst-
case scenarios RCP 8.5 predictions for both 2050 and 
2070 and the current prediction. We then calculated the 
change between the ensemble prediction of RCP 8.5 and 
current predictions and plotted the change into a map. 
Secondly, we quantified and visualized the change in 
range shift using presence and absence data. The pres-
ence and absence data were extracted from occurrence 
probabilities using coordinates from both current and 
future predictions by setting a threshold for TSS where it 
is maximized. The threshold converts the probabilities to 
binary scores, 1 (presence) and 0 (absence) [54]. Then we 
prepared an empty raster with the same extent and reso-
lution with the other ensemble maps and plotted pres-
ence and absence points based on the threshold.

Results
Model performance
Sensitivity and specificity scores were excellent for all 
models indicating both suitable and unsuitable areas 

were well identified and the proportion of correctly clas-
sified samples were maximum (Fig. S8). Receiver opera-
tor characteristics (ROC) curve using bootstrap and 
subsampling replication methods for different SDMs 
showed that sensitivity (true positive rate) of the vertical 
line and 1-specificity (false positive rate) of the horizontal 
line describe the proportion of correctly and incorrectly 
classified samples (Fig. S8). The red and blue curves 
represent the mean of AUC using training and test data 
respectively (Fig. S8).

In this study the AUC value achieved was 0.97 
(Table  2), indicating an excellent performance of the 
ensemble model, as values closer to 1 suggest a near-per-
fect ability of the model to distinguish between presence 
and absence areas. The TSS value, at 0.88 (Table 2), also 
demonstrates a high level of accuracy, as values closer 
to + 1 denote perfect agreement between observed and 
predicted species presence [52]. Additionally, the six 
modeling algorithms performed best resulting in an AUC 
value ranging from 0.94 to 0.98 and TSS values ranging 
from 0.86 to 0.92 (Table  2). Generally, the performance 
of both machine learning and regression algorithms were 
excellent. The differences in the modelling techniques’ 
performance and prediction ability in this study suggest 
that, the ensemble model has the potential to model a 
suitable habitat for the target species, as also suggested 
by [86]. Random Forest outperformed all other models, 
with a high COR (0.91) (Table  2) and a comparatively 
lower deviance (0.24) (Table 2).

Variable importance analysis
The key environmental factors that determined the suit-
ability of habitat for Menelik’s bushbuck were bio6 (min 
temperature of coldest month), followed by bio12 (annual 
precipitation), elevation, solar radiation, and bio18 (pre-
cipitation of warmest quarter) (Fig. 2). The remaining envi-
ronmental variables had lower effects. Aspect and slope 
contributed the least to the distribution of the target species.

The response curve also showed the relationships of 
probability of occurrence of the target species and each 

Table 2  Results of model performance

Method AUC​ COR TSS Deviance

Maxent 0.98 0.85 0.89 0.35

GLM 0.97 0.83 0.86 0.38

BRT 0.97 0.84 0.87 0.50

RF 0.98 0.91 0.92 0.24

GAM 0.94 0.83 0.86 0.68

MARS 0.97 0.84 0.88 0.56

Ensemble 0.97 0.85 0.88 0.45
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environmental variable (Fig. S1). The habitat suitability 
of Menelik’s bushbuck decreases, when bio6 (Min Tem-
perature of Coldest Month), bio12 (Annual Precipita-
tion), bio2 (Mean Diurnal Range [Mean of monthly), 
bio15 (Precipitation of Seasonality), bio19 (Precipitation 
of Coldest Quarter), aspect and solar radiation decreases 
(Fig. S1) however, habitat suitability of the target species 
increases with an increase in the predictor variables, such 
as elevation, bio3 (Isothermality), land cover, slope and 
bio18 (Precipitation of Warmest Quarter) (Fig. S1).

Past, present and future climatic distributions
Dynamics of suitable habitats of Menelik’s bushbuck
According to our modelling, the current distribution of 
suitable habitat for Menelik’s bushbuck is in the high-
lands of Bale, Arsi, Chercher, western Showa, Illubabor, 
Menz-Guassa, Wof-Washa, Simien and Borena Saint 
(Fig. 3).

The current extent of suitable habitat is 25,546 km2 
within an elevation range of 2000  m to 3800  m. Com-
pared to this, the extent during the LGM was 24.1% 
larger and extended further into the northern, central, 
and south eastern highlands of Ethiopia. During the Mid-
Holocene the area was 57.6% larger than the current area 
(Table 3).

Compared to the current extent, all future climate sce-
narios projection under the (2050RCP4.5, 2070RCP4.5, 
2050RCP8.5 and 2070RCP8.5) estimated the total area 
of suitable habitat of Menelik’s bushbuck would decline 
sharply by 81.4%, 96.8%, 95.1% and 99.8% respectively 
(Table  3). This showed the target species is currently 
under pressure from climate change and human pressure 
on its suitable habitat. Thus the species will lose most of 

its suitable habitat until 2070 under RCP 8.5 and only a 
small part of its current distribution south of the Rift Val-
ley mainly in the highlands of Arsi and Bale will remain 
suitable (Fig. 3).

The magnitude of the loss of potentially suitable habi-
tats of Menelik’s bushbuck in 2070 under all future cli-
mate scenarios is the highest compared to the current, 
Mid-Holocene, and Last Glacial Maximum (Table 3). The 
Mid-Holocene potential habitat of 60,282.24 km2 and the 
LGM potential habitat of 33,652 km2 will shrink only 52.4 
km2 in 2070 in 2070 under RCP 8.5 (Table 3). Generally, 
the ensemble prediction estimated, the suitable habitats 
of Menelik’s bushbuck will decrease sharply for the year 
2070 for both RCP 4.5 and RCP 8.5 scenarios compared 
to the current projection (Table 3).

The suitable habitats of this species steadily decrease 
with increasing RCP scenarios and projection years 
(Table 3). The magnitude of the loss of potential suitable 
habitats of Menelik’s bushbuck will be highest in 2050 
and 2070 under RCP 8.5 climate scenarios compared 
to the current (Table 3). The loss in the current suitable 
habitats of Menelik’s bushbuck is over 95.1% and 99.8% 
for the years 2050 and 2070 respectively under RCP 8.5 
climate scenarios (Table 3).

Range shift visualization
Fundamental assumption in SDM is presuming the mod-
elled species being in equilibrium with its environment 
[60] as opposed to still spreading in a new habitat (inva-
sive species). However, it can be also argued that the land 
use and climate change are simultaneously transforming 
the species ranges. Other basic assumption in SDM is 
that the habitat is actually dictated by the environmental 

Fig. 2  Relative contributions of environmental variables on the suitability of habitat for Menelik’s bushbuck
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requirements and tolerances [60] and the relationships 
are not just random correlations without causation. Tak-
ing spatial autocorrelation into account while working 
with SDMs is crucial, even if it would mean only pointing 
out its existence.

To clarify how the geographic distribution patterns 
of Menelik’s bushbuck may change, we calculated the 
change in suitability compared to current suitability 
for each grid cell and scenario. Range change differed 
between past and the two future scenarios depending on 
Menelik’s bushbuck response. For this species, range loss 
was predicted to be larger than range gain, irrespective 
of the scenario (Fig. 4), however, the greatest losses were 

predicted in 2050 and 2070 under the RCP 8.5 scenario. 
Specifically, in 2070 under RCP 8.5, Menelik’s bushbuck 
(99.8%), was predicted to lose the largest portions of its 
suitable ranges. In this regard, the probabilities of occur-
rence and presence and absence points were extracted 
from 2050 and 2070 ensemble prediction maps to visual-
ize range shift in Menelik’s bushbuck (Fig. 4). This species 
will lose most of its current suitable habitats in 2050 and 
2070 and will occur on a small, fragmented and patchy 
habitat in the highlands of south of the rift valley (red 
colour in Fig. 4A and B). Its presence-absence is depicted 
in Fig.  4C and D showing the likely occurrence of the 

Fig. 3  Distribution of suitable habitat of Menelik’s bushbuck under past, current and future (2050; 2070) climate conditions. Suitability classes: (0.00 
- 0.2) = unsuitable; (0.2- 0.40) = least suitable; (0.4 - 0.6) = moderately suitable; (0.6 - 1) = suitable. Green colour denotes potential suitable habitats; 
yellow indicates moderately suitable habitats; pink shows least suitable habitats and grey denotes unsuitable habitats
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species with impressive shrinkage of its current suitable 
ranges.

Discussion
Several studies documented the global warming poten-
tially can lead a significant habitat shifts of suitable 
habitats of many species in particular those adapted to 
the afro alpine highlands of Africa [61–63]. The Ethio-
pian plateau ’roof of Africa’ rises 1500 masl above the 
plateau that lies at 2500 masl and comprises 80% of the 

landmass of Africa above 3000  m asl [64]. With this 
study, we modelled the distribution of Menelik’s bush-
buck under past (Last Glacial Maximum and Mid-Hol-
ocene), current and future climatic scenarios. The study 
provides important bearings on conservation and man-
agement of Menelik’s bushbuck under the influence of 
climate change and human impact effects which in turn 
will help to develop of strategies and policies for the 
management and conservation of this endemic high-
land species.

We evaluated model discrimination ability using true 
skill statistic (TSS), Kappa, area under the curve (AUC) of 
the receiver operator characteristic (ROC), and the devi-
ance statistic. These measures attribute different weights 
to the various types of prediction errors [52]. To evalu-
ate the performance of the models, AUC (area under the 
receiver-operating characteristic curve) is an effective, 
threshold-independent indicator and its values are used 
as the main evaluator.

Current and future potential distributions
Future distribution models can forecast habitat suitabil-
ity and provide information on the likelihood of range 
shifts or population changes [65]. This study showed that 
Menelik’s bushbuck had larger distribution range during 
period of Mid-Holocene followed by Last Glacial Maxi-
mum than the current extent. The reduction of suitable 
habitat of the Menelik’s bushbuck is likely to be further 
diminished in climate scenarios and projection years. The 
threshold-independent AUC and threshold-dependent 

Table 3  Projected potential suitable habitats of Menelik’s 
bushbuck in the Last Glacial Maximum, Mid-Holocene, current 
and future climate conditions

Time Areas of 
suitable 
habitats in km2

% change 
compared to 
current

Last Glacial 
Maximum—
LGM (22,000 
BP)

Last Glacial Maxi-
mum—LGM (22,000 
BP)

33,652  + 24.1%

Mid Holo-
cene—MDH 
(6,000 BP)

Mid Holocene—
MDH (6,000 BP)

60,282  + 57.6%

Current Current 25,546 -

Future RCP 4.5 2050 4,763 −81.4%

2070 818 −96.8%

RCP 8.5 2050 1,259 −95.1%

2070 52 −99.8%

Fig. 4  Probability of occurrence (A and B) and presence-absence (C and D) of suitable habitat for Menelik’s bushbuck in 2050 and 2070
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TSS performance scores for Menelik bushbuck was per-
forming excellent indicating the performance quality 
of species distribution models. The current estimated 
potential habitat of Menelik’s bushbuck which is about 
25,546 km2. The larger proportion of the suitable habitats 
is found within the protected areas and controlled hunt-
ing areas. While protected areas have valuable contribu-
tion for the species conservation, the they are still under 
the influence of human activities including unsustainable 
natural resource use, livestock grazing and encroach-
ment. Supporting the local community to engage with 
agricultural activities compatible with biodiversity con-
servation including agroforestry, bee keeping and other 
off farm activities which can generate additional income 
may be useful strategy in addition to law of enforcement.

The current potential habitat of Menelik’s bushbuck 
is likely to be diminished to 818 km2 and 52 km2 for the 
RCP 4.5 and RCP 8.5 scenarios respectively during 2070 
indicating the need for urgent conservation efforts for 
the sustainable survival of this species in the highlands 
of Ethiopia. These predictions are relevant to other high-
altitude Afromontane biodiversity, and therefore are 
particularly worrying given the high levels of endemism 
found in the region [66, 67]. The shrink in habitat due to 
climate change is predicted to other endemic highlands 
species of Ethiopia including Ethiopian wolf (C. simensis) 
[7] and Theropithecus gelada [9] will have very limited 
predicted suitable habitats.

Past distributions
SDMs for historical timelines can offer ecological and 
evolutionary data on the historical changes of species 
distribution over time [68]. Past models can be used to 
explain phylogeographic patterns and speciation pro-
cesses, as well as to predict historical hotspots and poten-
tial migration routes [68]. Additionally, studies on how 
species have adapted to past climate change offer impor-
tant insights into how species will respond to climate 
change in the future [69].

During last glacial maximum the suitable habitat of 
Menelik’s bushbuck had expanded to northern, central 
and south eastern highlands of Ethiopia, covering an 
area 31.73% larger than the present range but decreased 
by 79.13% from the time of Mid-Holocene. On the other 
hand, during the period of Mid-Holocene the area of 
suitable habitat for Menelik’s bushbuck was respectively 
135.97% and 79.1% larger than from the current and Last 
Glacial Maximum.

As a result, the habitat suitability projected for the 
Last Glacial Maximum and Mid-Holocene scenarios 
varied for the target species preferring more Mid-Holo-
cene environmental conditions than Last Glacial Maxi-
mum. This is because of the suitable areas of Menelik’s 

bushbuck shifted from low latitudes to high latitudes 
from the Last Glacial Maximum to the Mid-Holocene. 
This finding is consistent with those of  Saupe et  al. 
[70] about the high-latitudinal migration of tropical spe-
cies as temperatures rise over geological ages. During the 
Last Glacial Maximum, the climate was cooler and drier, 
hence no rainfall,thus, vegetation only occurred in high-
elevation refugia regions due to the formation of mist 
[71]. However, during the Mid-Holocene the temperature 
became warmer [68], hence the adaptation of Menelik’s 
bushbuck could spread. Most importantly, the difference 
between the two climate scenarios of the past could be a 
result of desiccation tolerance speciation, evolution and 
adaptation for Menelik’s bushbuck which would explain 
the differences in the species responses.

Compared with the current and LGM times, the Mid-
Holocene projection estimated the presence of more 
suitable habitats in the northern, central and south east-
ern highlands of the country, majority of the distributions 
located south of the rift valley (Bale and Arsi) highlands 
and central highlands showing the target species had dif-
ferent extents of suitable habitats during the period of 
Last Glacial Maximum and Mid-Holocene. As a result, 
this species had larger distribution range during period 
of Mid-Holocene followed by Last Glacial Maximum 
than the current extent.

Environmental factors affecting the distribution 
of Menelik’s bushbuck
Ecological factors determine the distribution of species. 
Temperature, precipitation, topographic and anthropo-
genic (land cover) variables are mostly discussed ecologi-
cal factors to shape the distribution of flora and fauna. 
Temperature decreases as altitude increases, while pre-
cipitation and altitude have a direct relationship. As 
a result of climate change, temperature is expected to 
increase from 0.3⁰C to 1.7⁰C for emission mitigation 
scenario (RCP 2.6), 1.4⁰C to 3.1⁰C for the intermediate 
emission scenario (RCP 4.5) and 2.6⁰ C to 4.8⁰ C for high 
emission scenario (RCP 8.5) by 2100 [72].

The study’s findings show that environmental variables 
play a vital role in this species’ distribution with bio6 
contributing the most to the distribution of Menelik’s 
bushbuck followed by bio12, elevation and bio18 under 
the examined climate change scenarios. Bio6 gives the 
highest response to climate change for all algorithms 
used for modelling. These variables are expected to alter 
significantly under the RCP8.5 scenario, causing substan-
tial portions of the current distribution area to become 
unsuitable by 2050. This study predicts more range con-
traction under RCP8.5 by 2070, a comparatively more 
extreme scenario. The interaction between temperature, 
precipitation, topographical and anthropogenic variables 
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will influence the habitat requirements of the target 
species.

Response curves generated for this species estimated 
different variables giving responses for each algorithm. 
For example; for BRT and RF the environmental variable 
that gave a high response was elevation (Fig. S2 and S7), 
while for GAM four variables showed a high response 
(land cover, slope, bio3 and aspect) among those land 
cover and bio3 showed the highest response (Fig, S3). 
Similarly, for GLM four variables showed a high response 
(bio18, Bio3, slope and land cover) among those bio18 
showed the highest response (Fig. S4) while for MARS 
four variables showed a high response (bio3, elevation, 
land cover, Bio18 and slope) among those bio3 showed 
the highest response (Fig. S5). Lastly, for MaxEnt four 
variables showed a high response (bio18, elevation, Bio3, 
slope and bio3) among those bio18 showed the highest 
response (Fig. S6).

Land cover was also included in our model projections 
and then the response curve showed that habitat suit-
ability of Menelik’s bushbuck increases with an increase 
in land cover among the other predictor variables (Fig. 
S1). This indicates, land use change can significantly 
increase the spatial extent of unsuitable habitats [73]. A 
pronounced negative influence of rural human popula-
tion growth on several mammal species was indicated in 
the highlands of southwestern Ethiopia [74]. This implies, 
climate change coupled with land use changes as a result 
of human pressure and associated perturbations are pos-
ing a risk of suitable habitat loss for the highland species. 
Given that Ethiopian highlands are isolated and human 
alteration is highly increasing, conservation strategies 
should be prepared to tackle the potential habitat loss 
and risk of extinction. As the climate gets warmer species 
give response by shifting their range or by adapting to the 
changes. Range shifts can result to habitat contraction or 
expansion.

Limitation of the study
The model predictions of Menelik’s bushbuck did not 
consider factors such as dispersal ability and biotic 
interactions that may restrict species range shifts due to 
absence of data availability. Furthermore, biotic inter-
actions have been suggested to influence species geo-
graphic distribution at all spatial extents across and 
within trophic levels [75]. They have been found to shape 
species’ spatial patterns by the operation of multiple 
mechanisms,notable examples are competition, preda-
tion and host-parasite [76, 77]. The development of these 
environmental data over large spatial extents and the 
addition of these factors into the models will improve the 
robustness of the predictions of SDMs.

Conclusion
This is the first study using background data and ensem-
ble modelling methods to improve the accuracy in the 
model predictions combining climate, topography and 
land cover data to simulate the distribution of potential 
suitable areas of Menelik’s bushbuck in the highlands 
of Ethiopia across the past, current and future climate 
changes, and analyze the dominant environmental fac-
tors affecting the target species distribution. As a result, 
the study showed that the ensemble model performed 
better than single models, and it is good enough at pre-
dicting the potential suitable habitat of Menelik’s bush-
buck with excellent accuracy. The majority of the current 
suitable habitats for this species were found in the high-
lands of south eastern, central and northern Ethiopia 
indicating the target species in the study area is highly 
vulnerable to environmental change.

The study also showed temperature, precipitation and 
elevation had an impact on the targeted species’ present 
distribution, which was consistent with the trend seen at 
both the global and regional scales. Min Temperature of 
Coldest Month contributing the most to the distribution 
of Menelik’s bushbuck followed by Annual Precipitation 
and elevation under the examined climate change sce-
narios. The remaining variables had lower contribution 
to the habitat suitability of this species. Aspect and slope 
contributed the least to the distribution of this species.

Our research highlights the negative impacts of cli-
mate change on the Menelik’s bushbuck, as it is expected 
to experience a sharp decline in its geographic range 
under future climate change scenarios. These findings 
provide valuable insights in identifying areas that are 
likely to remain suitable for this species in future climate 
change scenarios. To ensure the survival of the Menelik’s 
bushbuck, it is crucial to enhance the protection of its 
habitats. We recommend the development and imple-
mentation of a species conservation action plan to miti-
gate the climate change effects and human disturbance 
on its distribution.

Abbreviations
AUC​	� Area Under the Curve
BRT	� Boosted Regression Tree
CCSM4	� Community Climate System Model version 4
CMIP5	� Coupled Model Intercomparison Project 5
EBI	� Ethiopian Biodiversity Institute
EFAP	� Ethiopian Forestry Action Program
EWCA​	� Ethiopian Wildlife Conservation Authority
GAM	� Generalized Additive Model
GCMs	� Global Climate Models
GLM	� Generalized Linear Model
IPCC	� Intergovernmental Panel on Climate Change
LCCS	� Land Cover Classification System
MARS	� Multivariate Adaptive Regression Splines
Maxent	� Maximum Entropy
RCP	� Representative Concentration Pathways
RF	� Random Forest
SDMs	� Species Distribution Models



Page 12 of 14Abuhay et al. BMC Ecology and Evolution           (2025) 25:47 

SRTM	� Shuttle Radar Topography Mission
TSS	� True Skill Statistic
USDM	� Uncertainty Analysis for Species Distribution Models
USGS	� United States Geological Survey
VIF	� Variance Inflation Factor

Supplementary Information
The online version contains supplementary material available at https://​doi.​
org/​10.​1186/​s12862-​025-​02367-x.

Supplementary Material 1.

Acknowledgements
We thank the Ethiopian Wildlife Conservation Authority (EWCA) for the 
permission to carry out the field work. We thank to the reviewers and editor of 
the journal for their constructive comments and suggestions.

Authors’ contributions
Conceptualization: Zeleke Tigabe Abuhay, Anagaw Atickem. Data curation: 
Zeleke Tigabe Abuhay,Arega Mekonen Ali. Formal analysis: Zeleke Tigabe 
Abuhay. Methodology: Zeleke Tigabe Abuhay, Anagaw Atickem, Dietmar Zin-
ner. Supervision: Anagaw Atickem, Dietmar Zinner.Validation: Zeleke Tigabe 
Abuhay. Visualization: Zeleke Tigabe Abuhay. Writing original draft: Zeleke 
Tigabe Abuhay. Writing - review and editing: Zeleke Tigabe Abuhay, Dietmar 
Zinner, Anagaw Atickem.

Funding
The author(s) reported there is no funding associated with the work featured 
in this article.

Data availability
No datasets were generated or analysed during the current study.

Declarations

Ethics approval and consent to participate
Ethical review and approval were not required for the animal study because 
the study didn’t require animal handling. The field survey and data collection 
were conducted without disturbing the animals.

Consent for publication
Not applicable.

Competing interests
The authors declare that the research was conducted in the absence of any 
commercial or financial relationships that could be construed as a potential 
conflict of interest.

Author details
1 Department of Zoological Sciences, Addis Ababa University, P.O. Box 1176, 
Addis Ababa, Ethiopia. 2 Ethiopian Wildlife Conservation Authority, Addis 
Ababa, P.O. Box 38, Ethiopia. 3 Cognitive Ethology Laboratory, German Primate 
Center, Leibniz Institute for Primate Research, Göttingen, Germany. 4 Depart-
ment of Primate Cognition, Georg-August-University of Göttingen, Göttingen, 
Germany. 5 Leibniz-Science Campus Primate Cognition, Göttingen, Germany. 

Received: 18 May 2024   Accepted: 21 March 2025

References
	1.	 Chan WP, Lenoir J, Mai GS, Kuo HC, Chen IC, Shen SF. Climate 

velocities and species tracking in global mountain regions. Nature. 
2024;629:114–20.

	2.	 Marris E. The escalator effect. Nat Clim Change. 2007;1:94–6.
	3.	 Sekercioglu CH, Schneider SH, Fay JP, Loarie SR. Climate change, eleva-

tional range shifts, and bird extinctions. Conserv Biol. 2008;22:140–50.

	4.	 Laurance WF, Useche DC, Shoo LP, Herzog SK, Kessler M, Escobar F, 
et al. Global warming, elevational ranges and the vulnerability of tropi-
cal biota. Biol Conserv. 2011;144:548–57.

	5.	 Chala D, Gizaw A, Thorn JPR, Sanchez AC, Eilu G, Demissew S, et al. The 
sky islands in eastern Africa: biodiversity, opportunities, and risks. In: 
Schneiderbauer S, Fontanella Pisa P, Shroder JR, Szarzynski J, editors., 
et al., Safeguarding mountain social-ecological systems, vol. 2. Amster-
dam: Elsevier; 2024. p. 97–107.

	6.	 Ethiopian Biodiversity Institute (EBI). Ethiopia‘s fifth national report to the 
convention on biological diversity. Addis Ababa: Ethiopian Biodiversity 
Institute (EBI); 2014.

	7.	 Berhanu Y, Tassie N, Sintayehu DW. Predicting the current and future suit-
able habitats for endemic and endangered Ethiopian wolf using MaxEnt 
model. Heliyon. 2022;8(8):e10223.

	8.	 Razgour O, Kasso M, Santos H, Juste J. Up in the air: threats to afromon-
tane biodiversity from climate change and habitat loss revealed 
by genetic monitoring of the Ethiopian Highlands bat. Evol Appl. 
2021;14(3):794–806.

	9.	 Ahmed AS, Chala D, Kufa CA, Atickem A, Bekele A, Svenning JC, Zinner 
D. Potential changes in the extent of suitable habitats for geladas (Thero-
pithecus gelada) in the Anthropocene. BMC Ecol Evol. 2023;23(1):65.

	10.	 Stephens PA, d’Sa CA, Sillero-Zubiri C, Williams NL. Impact of livestock and 
settlement on the large mammalian wildlife of Bale Mountain National 
Park, southern Ethiopia. Biol Conserv. 2001;100:307–22.

	11.	 Debela H. Human influence and threat to biodiversity and sustainable 
living. Eth J Educat Sci. 2007;3(1):85–95.

	12.	 Belay S, Amsalu A, Abebe E. Land use and land cover changes in Awash 
National Park, Ethiopia: impact of decentralization on the use and man-
agement of resources. Open J Ecol. 2014;4:950–60.

	13.	 Kasso M, Bekele A. Threats to mammals on fragmented habitats around 
Asella Town, Central Ethiopia. Int J Biodivers. 2014;2014(1):903898. https://​
doi.​org/​10.​1155/​2014/​903898.

	14.	 Gebretsadik T. Causes for biodiversity loss in Ethiopia: A review from 
conservation perspective. J Nat Sci Res. 2016;6(11):32–40.

	15.	 Elsen PR, Monahan WB, Merenlender AM. Topography and human pres-
sure in mountain ranges alter expected species responses to climate 
change. Nat Commun. 2020;11(1):1974.

	16.	 Yalden DW, Largen MJ, Kock D. Catalogue of the mammal of Ethiopia: 5 
Artiodactyla. Ital J Zool. 1984;19:140–5.

	17.	 Merckx B, Steyaert M, Vanreusel A, Vincx M, Vanaverbeke J. Null models 
reveal preferential sampling, spatial autocorrelation and overfitting in 
habitat suitability modelling. Ecol Model. 2011;222(3):588–97.

	18.	 Yazezew D, Mamo Y, Bekele A. Population ecology of Menelik’s bushbuck 
(Tragelaphus scriptus meneliki, Neumann, 1902) from Donkoro For-
est proposed National Park, Northern Ethiopia. Int J Ecol Environ Sci. 
2011;37:1–13.

	19.	 Girma Z, Bekele A, Graham H. Large mammals and mountain encroach-
ments on Mount Kaka and Hunkolo Fragments, Southeast Ethiopia. Asian 
J Appl Scie. 2012;5(5):279–89.

	20.	 Zerihun M. Population status, habitat association, feeding behaviour and 
diurnal activity of Menelik’s Bushbuck (Tragelaphus scriptus meneliki) in 
Dinsho, Bale Mountains National Park, Ethiopia. MSc Thesis, Addis Ababa 
University, Addis Ababa. 2012. 

	21.	 Ethiopian Wildlife Conservation Authority (EWCA). Unpublished census 
report in controlled hunting areas. Addis Ababa, Ethiopia. 2022. https://​
www.​ewca.​gov.​et.

	22.	 Plumptre AJ, Wronski T. Tragelaphus scriptus Bushbuck. In: Mammals of 
Africa: v. VI: Pigs, Hippopotamuses, Chevrotain, Giraffes, Deer and Bovids, 
ed. by J. Kingdon and M. Hoffmann (London: Bloomsbury Publishing). 
2013.

	23.	 Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, 
Huettmann F, Leathwick JR, Lehmann A, et al. Novel methods improve 
prediction of species’ distributions from occurrence data. Ecography. 
2006;29:129–51.

	24.	 Kindt R. Ensemble species distribution modelling with transformed suit-
ability values. Environ Model Softw. 2018;100:136–45.

	25.	 Mi C, Huettmann F, Guo Y, Han X, Wen L. Why choose random forest to 
predict rare species distribution with few samples in large under sampled 
areas? Three Asian crane species models provide supporting evidence. 
PeerJ. 2017;5: e2849.

https://doi.org/10.1186/s12862-025-02367-x
https://doi.org/10.1186/s12862-025-02367-x
https://doi.org/10.1155/2014/903898
https://doi.org/10.1155/2014/903898
https://www.ewca.gov.et
https://www.ewca.gov.et


Page 13 of 14Abuhay et al. BMC Ecology and Evolution           (2025) 25:47 	

	26.	 Woodman SM, Forney KA, Becker EA, DeAngelis ML, Hazen EL, Palacios 
DM, Redfern JV. ESDM: a tool for creating and exploring ensembles of 
predictions from species distribution and abundance models. Methods 
Ecol Evol. 2019;10:1923–33.

	27.	 Buisson L, Thuiller W, Casajus N, Lek S, Grenouillet G. Uncertainty 
in ensemble forecasting of species distribution. Glob Change Biol. 
2010;16:1145–57.

	28.	 Araújo M, New M. Ensemble forecasting of species distributions. Trends 
Ecol Evol. 2007;22(1):42–7.

	29.	 Mittermeier RA, Gil PR, Hoffman M, Pilgrim J, Brooks T, Mittermeier CG, 
Lamoreux J, da Fonseca GAB. Hotspots Revisited: Earth’s Biologically 
Richest and Most Endangered Terrestrial Ecoregions. Washington: 
Conservation International; 2004.

	30.	 Yalden DW, Largen MJ. The endemic mammals of Ethiopia. Mammal 
Rev. 1992;22:115–50.

	31.	 Largen M, Spawls S. The amphibians and reptiles of Ethiopia and 
Eritrea. Edition. 2010. Chimaira, Frankfurt am Main.

	32.	 Redman N, Stevenson T, Fanshawe J. Birds of the horn of Africa: Ethio-
pia, Eritrea, Djibouti, Somalia and Socotra. 2011.

	33.	 Enquist BJ, Feng X, Boyle B, Maitner B, Newman EA, et al. The common-
ness of rarity: Global and future distribution of rarity across land plants. 
Sci Adv. 2019;5:eaaz0414.

	34.	 Aerts R, Overtveld VK, November E, Alemayehu W, Abrham A, Sebsebe 
D, Desalegn D, et al. Conservation of the Ethiopian church forests: 
threats, opportunities and implications for their management. Sci Total 
Environ. 2016;551–552(2016):404–14.

	35.	 EFAP (Ethiopian Forestry Action Program). Volume II - The Challenge 
for development. Ministry of National Resources Development and 
Environmental Protection. Addis Ababa, Ethiopia. 1993.

	36.	 Ethiopian Wildlife Conservation Authority (EWCA) census report in the 
Simien Mountains National Park (SMNP). Un published. Addis Ababa, 
Ethiopia. 2022. https://​www.​ewca.​gov.​et.

	37.	 Poloczanska E, Brown C, Sydeman WJ, Kiessling W, Schoeman D, Moore 
P, Brander K, Bruno JF, Buckley LB, Burrows M, et al. Global imprint of 
climate change on marine life. Nat Clim Chang. 2013;3:919–25.

	38.	 Keating KA, Gogan PJ, Vore JM, Irby LR. A simple solar radiation index 
for wildlife habitat studies. J Wildl Manag. 2007;71:1344–8.

	39.	 Gagan MK, Ayliffe LK, Hopley D, Cali JA, Mortimer GE, Chappell J, 
McCulloch MT, Head MJ. Temperature and surface-ocean water 
balance of the mid-Holocene tropical western Pacific. Science. 
1998;279:1014–8.

	40.	 Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, Carré G, et al. Col-
linearity: a review of methods to deal with it and a simulation study 
evaluating their performance. Ecography. 2013. 36(1), 27 - 46.

	41.	 Elith J, Kearney M, Phillips S. The art of modeling range-shifting species. 
Methods Ecol Evol. 2011;2(4):330–42.

	42.	 O’Brien RM. A Caution Regarding Rules of Thumb for Variance Inflation 
Factors. Qual Quant. 2007;41:673–90.

	43.	 Naimi, B. Package ‘usdm’. Uncertainty analysis for species distribution 
models. Wien; 2017. http://​www.​cran.r-​proje​ct.​org.

	44.	 Naimi B, Araujo MB. sdm: a reproducible and extensible R platform for 
species distribution modeling. Ecography. 2016;39(4):368–75.

	45.	 Mbatudde M, Mwanjololo M, Kakudidi EK, Dalitz H. Modelling the 
potential distribution of endangered Prunus africana (Hook. f.) Kalkm. 
in East Africa. Afr J Ecol. 2012;50:393–403.

	46.	 Brown JL. SDMtoolbox: A python-based GIS toolkit for landscape 
genetic, biogeographic and species distribution model analyses. Meth-
ods Ecol Evol. 2014;5:694–700.

	47.	 Stohlgren TJ, Ma P, Kumar S, Rocca M, Morisette JT, Jarnevich CS, Ben-
son N. Ensemble habitat mapping of invasive plant species. Risk Anal. 
2010;30:224–35.

	48.	 Capinha C, Anastácio P. Assessing the environmental requirements 
of invaders using ensembles of distribution models. Divers Distrib. 
2011;17:13–24.

	49.	 Hu XY, Fang L, Ying J, Da Yuan X. The effects of climate change on 
the distribution of snub-nosed monkey in China. Adv Mater Res. 
2015;1092–1093:645–50.

	50.	 Wiley EO, McNyset KM, Peterson AT, Robins CR, Stewart AM. Niche 
modeling and geographic range predictions in the marine envi-
ronment using a machine-learning algorithm. Oceanography. 
2003;16(3):120–7.

	51.	 Phillips SJ, Anderson R, Schapire R. Maximum entropy modelling of spe-
cies geographic distributions. Ecol Model. 2006;190:231–59.

	52.	 Allouche O, Tsoar A, Kadmon R. Assessing the accuracy of species distri-
bution models: prevalence, kappa and the true skill statistic (TSS). J Appl 
Ecol. 2006;43:1223–32.

	53.	 Zhang L, Liu S, Sun P, Wang T, Wang G, Zhang X, Wang L. Consensus fore-
casting of species distributions: The effects of niche model performance 
and niche properties. PLoS One. 2015;10(e012):0056.

	54.	 Breugel VP, Friis I, Demissew S. The transitional semi-evergreen bushland 
in Ethiopia: characterization and mapping of its distribution using predic-
tive modeling. Appl Veg Sci. 2016;19:355–67.

	55.	 Olson D.M, Dinerstein E. The global 200: priority ecoregions for global 
conservation. Ann. Mo. Bot. Gard. 2002. p. 89 - 199. https://​doi.​org/​10.​
2307/​32985​64.

	56.	 Hernandez PA, et al. The effect of sample size and species characteristics 
on performance of different species distribution modeling methods. 
Ecography. 2006;29:773–85.

	57.	 West AM, Evangelista PH, Jarnevich CS, Young NE, Stohlgren TJ, Talbert C, 
Talbert M, Morisette J, Anderson R. Integrating remote sensing with spe-
cies distribution models; mapping tamarisk invasions using the software 
for assisted habitat modeling (SAHM). J Vis Exp. 2016;116: e54578.

	58.	 Ahmed N, Atzberger C, Zewdie W. Species distribution modelling per-
formance and its implication for Sentinel-2-based prediction of invasive 
Prosopis juliflora in lower Awash River Basin, Ethiopia. Ecol Process. 
2021;10:18. https://​doi.​org/​10.​1186/​s13717-​021-​00285-6.

	59.	 Phillips SJ, Dudík M, Elith J, Graham CH, Lehmann A, Leathwick J, Fer-
rier S. Sample selection bias and presence-only distribution models: 
implications for background and pseudo-absence data. Ecol Appl. 
2009;19:181–97.

	60.	 Franklin J, Miller JA. Mapping species distributions (Reprinted ed.). U.K.: 
Cambridge University Press; 2010. p. 320.

	61.	 Barry RG, Seimon A. Research for mountain area development: climatic 
fluctuations in the mountains of the Americas and their significance. 
Ambio. 2000;29:364–70.

	62.	 Lovejoy TE, Hannah L. Climate change and biodiversity. NH: Yale Univer-
sity Press; 2005.

	63.	 McCormack JE, Huang H, Knowles LL. Sky islands. In: Gillespie RG, Clague 
DA, editors. Encyclopedia of Islands. Berkeley: University of California 
Press; 2009. pp. 841–3. https://​doi.​org/​10.​1525/j.​ctt1p​n90r.​203.

	64.	 Monasterio M, Vuilleumier F. Introduction: high tropical mountain biota 
of the world. In: High mountains tropical biogeography. Eds. Vuilleum-
ier, F. and Monasterio, M. Published by Oxford University Press and the 
American Museum of Natural History. Oxford University Press. New York. 
USA. 1986. 

	65.	 Sinclair SJ, White MD, Newell GR. How useful are species distribution 
models for managing biodiversity under future climates? Ecol Soc. 
2010;15: 8.

	66.	 Williams SD, Vivero JL, Spawls S, Anteneh S, Ensermu K. Ethiopian 
Highlands. In: Hotspots revisited: earth´s biologically richest and most 
endangered ecoregions. Chicago: University of Chicago Press; 2004. pp. 
262–73. 

	67.	 Gizaw A, Brochmann C, Nemomissa S, Wondimu T, Masao CA, Tusiime FM, 
Abdi AA, Oxelman B, Popp M, Dimitrov D. Colonization and diversification 
in the African ‘sky islands’: Insights from fossil-calibrated molecular dating 
of Lychnis (Caryophyllaceae). New Phytol. 2016;211(2):719–34.

	68.	 Park HS, Kim SJ, Stewart AL, et al. Mid-holocene northern hemisphere 
warming driven by arctic amplification. Sci Adv. 2022;5:eaax8203. https://​
doi.​org/​10.​1126/​sciadv.​aax82​03.

	69.	 Pearson RG, Thuiller W, Araújo MB, Martinez-Meyer E, Brotons L, McClean 
C, Miles L, Segurado P, Dawson TP, Lees DC. Model-Based Uncertainty in 
Species Range Prediction. J Biogeogr. 2006;33:1704–11.

	70.	 Saupe EE, Myers CE, Peterson AT, Soberón J, Singarayer JS, Valdes PJ, Qiao 
H. Spatio-temporal climate change contributes to latitudinal diversity 
gradients. Nature Ecology & Evolution. 2019. https://​doi.​org/​10.​1038/​
s41559-​019-​0962-7.

	71.	 Leal M. The African rain forest during the last glacial maximum, an archi-
pelago of forests in a sea of grass. Ph.D. thesis. University, Wageningen. 
2004.

	72.	 IPCC. Climate Change 2014: Synthesis Report. Contribution of 
Working Groups I, II and III to the Fifth Assessment Report of the 

https://www.ewca.gov.et
http://www.cran.r-project.org
https://doi.org/10.2307/3298564
https://doi.org/10.2307/3298564
https://doi.org/10.1186/s13717-021-00285-6
https://doi.org/10.1525/j.ctt1pn90r.203
https://doi.org/10.1126/sciadv.aax8203
https://doi.org/10.1126/sciadv.aax8203
https://doi.org/10.1038/s41559-019-0962-7
https://doi.org/10.1038/s41559-019-0962-7


Page 14 of 14Abuhay et al. BMC Ecology and Evolution           (2025) 25:47 

Intergovernmental Panel on Climate Change. Core Writing Team, 
Pachauri RK, Meyer LA, editors. Geneva: IPCC; 2014.

	73.	 Hu J, Liu Y. Unveiling the conservation biogeography of a data-deficient 
endangered bird species under climate change. PLoS One. 2014;9: 
e84529.

	74.	 Rodrigues P, Dorresteijn I, Guilherme JL, Hanspach J, Beenhouwer MD, 
Hylander K, Bekele B, Senbeta F, Fischer J, Nimmo D. Predicting the 
impacts of human population growth on forest mammals in the high-
lands of southwestern Ethiopia. Biol Conserv. 2021;256: 109046.

	75.	 Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, et al. The role of biotic 
interactions in shaping distributions and realised assemblages of species: 
implications for species distribution modelling. Biol Rev. 2013;88:15–30.

	76.	 Álvarez-Loayza P, White JF, Torres MS, Balslev H, Kristiansen T, Svenning 
JC, Gil N. Light Converts Endosymbiotic Fungus to Pathogen, Influencing 
Seedling Survival and Niche- Space Filling of a Common Tropical Tree, 
Iriartea deltoidea. PLoS One. 2011;6:1–8.

	77.	 Bellingham PJ, Towns DR, Cameron EK, Davis JJ, Wardle DA, Wilmshurst 
JM, Mulder CPH. New Zealand Island restoration: seabirds, predators, and 
the importance of history. N Z J Ecol. 2010;34:115–35.

	78.	 Taylor KE, Stouffer RJ, Meehl GA. An overview of CMIP5 and the experi-
ment design. Bull Am Meteorol Soc. 2012;93:485–98.

	79.	 van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, 
Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakiceno-
vic N, Smith SJ, Rose SK. The representative concentration pathways: an 
overview. Clim Change. 2011;109:5–31.

	80.	 IPCC. Climate change 2013: the physical science basis. In: The fifth 
assessment report of the intergovernmental panel on climate change. 
Cambridge and New York: Cambridge University Press; 2013.

	81.	 IPCC. Climate change and land: an IPCC special report on climate change, 
desertification, land degradation, sustainable land management, food 
security, and greenhouse gas fluxes in terrestrial ecosystems. Cambridge: 
Cambridge University Press; 2919.

	82.	 Brodie J, Post E, Laurance WF. Climate change and tropical biodiversity: a 
new focus. Trends Ecol Evol. 2012;27:145–50.

	83.	 Melaku T. Wildlife in Ethiopia: large endemic mammals. Curr Zool. 
2011;6:108–16.

	84.	 USGS (United State Geological Survey). Glacier and landscape change in 
response to changing climate. Glaciers and sea level. 2012. https://​pubs.​
usgs.​gov/​fs/​fs2-​00/.

	85.	 R Core Team. R: A Language and Environment for Statistical Computing. R 
Foundation for Statistical Computing, Vienna. 2023. https://​www.R-​proje​
ct.​org/.

	86.	 Montoya-Jiménez JC, Valdez-Lazalde JR, Ángeles-Perez G, De Los Santos-
Posadas HM, Cruz Cárdenas G. Predictive capacity of nine algorithms and 
an ensemble model to determine the geographic distribution of tree 
species. iForest. 2022;15:363–71. https://​doi.​org/​10.​3832/​ifor4​084-​015.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://pubs.usgs.gov/fs/fs2-00/
https://pubs.usgs.gov/fs/fs2-00/
https://www.R-project.org/
https://www.R-project.org/
https://doi.org/10.3832/ifor4084-015

	Modelling of past, current and future distribution of suitable habitat for Menelik’s bushbuck (Tragelaphus sylvaticus meneliki Neumann, 1902) in the Ethiopian highlands
	Abstract 
	Background 
	Methods 
	Results 
	Conclusion 

	Introduction
	Materials and methods
	Study area
	Data collection
	Species occurrence data
	Environmental variables

	Data analysis
	Collinearity analysis of predictor variables
	Background data
	Species distribution modelling
	Performance statistics
	Examining the impact of climate change on species distributions
	Quantifying and visualizing changes in range shift


	Results
	Model performance
	Variable importance analysis
	Past, present and future climatic distributions
	Dynamics of suitable habitats of Menelik’s bushbuck
	Range shift visualization


	Discussion
	Current and future potential distributions
	Past distributions
	Environmental factors affecting the distribution of Menelik’s bushbuck
	Limitation of the study

	Conclusion
	Acknowledgements
	References


