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Abstract 

Background: As flatfish, turbot undergo metamorphosis as part of their life cycle. In the larval stage, turbot live at 
the ocean surface, but after metamorphosis they move to deeper water and turn to benthic life. Thus, the light envi-
ronment differs greatly between life stages. The visual system plays a great role in organic evolution, but reports of the 
relationship between the visual system and benthic life are rare. In this study, we reported the molecular and evolu-
tionary analysis of opsin genes in turbot, and the heterochronic shifts in opsin expression during development.

Results: Our gene synteny analysis showed that subtype RH2C was not on the same gene cluster as the other four 
green-sensitive opsin genes (RH2) in turbot. It was translocated to chromosome 8 from chromosome 6. Based on 
branch-site test and spectral tuning sites analyses, E122Q and M207L substitutions in RH2C, which were found to be 
under positive selection, are closely related to the blue shift of optimum light sensitivities. And real-time PCR results 
indicated the dominant opsin gene shifted from red-sensitive (LWS) to RH2B1 during turbot development, which may 
lead to spectral sensitivity shifts to shorter wavelengths.

Conclusions: This is the first report that RH2C may be an important subtype of green opsin gene that was retained 
by turbot and possibly other flatfish species during evolution. Moreover, E122Q and M207L substitutions in RH2C may 
contribute to the survival of turbot in the bluish colored ocean. And heterochronic shifts in opsin expression may be 
an important strategy for turbot to adapt to benthic life.
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Background
To survive, all organisms must react to changes in the 
physical environment, such as temperature, circadian 
rhythm of light, and humidity [1]. Thus, to frame the 
evolutionary perspective about the molecular basis of 
organismal adaptation and biology, sensory systems are 
generally selected as ideal models [2]. Vision is closely 
related to behaviors such as foraging, mating, parental 

care, and avoiding predation. As it allows for almost 
instantaneous transmission of information, vision likely 
plays a great role in diversification [3]. Vision formation 
involves retinal reception, integration, and higher-order 
brain processing [4, 5]. Retinal reception is mediated by 
visual pigments, which consist of one opsin protein, a 
group of G protein-coupled receptors, and one chromo-
phore (11-cis-retinal, A1, or 11-cis-3, 4-dehydroretinal, 
A2) [3].

Due to water absorption and scattering of light, the 
photic environment of the aquatic system in which fish 
live changes rapidly with depth, especially a shift to 
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predominantly blue wavelengths in the ocean at about 
60–75 depth [1, 2]. Teleost code five classes of visual 
opsin genes: (1) RH1 (rhodopsin, spectral peak absorb-
ances around 500  nm) for dim light; (2) RH2 (rhodop-
sin-like opsin, 470–510  nm) for green; (3) SWS1 (short 
wavelength-sensitive type 1, 360–430 nm) for ultraviolet; 
(4) SWS2 (SWS1-like opsin, 440–460  nm) for blue; and 
(5) LWS (long wavelength-sensitive, 510–560  nm) for 
red. With the exception of RH1, which is expressed in 
rod photoreceptors, the other four classes are expressed 
in cone photoreceptors [3]. The cone opsin genes derived 
from two rounds of whole genome duplication [6]. It is 
believed that after several additional duplication events, 
diverse opsin repertoires were maintained among differ-
ent species [7–12]. RH2 and LWS duplication events were 
most prevalent in ray-finned fish, and tandem duplica-
tion seems to have produced more duplicates [13]. Due 
to substitution in key sites, the multiple opsin subtypes 
from duplication generally have different spectral peak 
absorbances (λmax), which helps enrich the visual system 
[2, 3, 7, 10].

In addition to the adaptive evolution of gene sequences, 
heterochronic shifts in visual opsin expression are an 
important mechanism of spectral tuning [14, 15]. For 
example, single cones in rainbow trout (Oncorhynchus 
mykiss) switch opsin expression from SWS1 to SWS2 
during the juvenile period [16], and in winter flounder 
(Pleuronectes americanus), only RH2 is expressed in 
the pre-metamorphic retina, whereas RH1, SWS2, and 
LWS are also expressed in the post-metamorphic retina 
[17]. Besides ontogenetic changes, plasticity of visual 
opsin expression in response to different photic environ-
ments is an important strategy that allows rapid adapta-
tion to environmental changes. Plastic opsin expression 
was reported to have a profound effect on Nile tilapia 
(Oreochromis niloticus) and guppy (Poecilia reticulate) 
during development. Specifically, juveniles and adults 
O. niloticus differ in spectral reflectance after the two 
environmental light treatments, demonstrating that 
environmental light plays a great role in signal produc-
tion throughout ontogeny. And developmental plasticity 
in vision may help P. reticulate overcome increased tur-
bidity [18, 19]. It was also reported for the adult stage of 
fish such as red shiner (Cyprinella lutrensis) and bluefin 
killifish (Lucania goodei) [20, 21]. Additionally, a recent 
study showed that opsin coexpression might be a novel 
mechanism for modulating color vision [22]. However, 
it is unclear whether the direction and extent of opsin 
expression plasticity is limited by ontogeny [23].

The turbot (Scophthalmus maximus) is an important 
aquaculture species with great commercial value. As a 
flatfish, metamorphosis is a critical part of its life cycle 
[24, 25]. During early life stage, S. maximus larvae live 

at the ocean surface and undergo metamorphosis char-
acterized by asymmetrical body transformation coupled 
with eye migration. After metamorphosis, turbot move 
to deep water and enter a benthic phase [26, 27]. This 
change in habitat results in a great shift in environmen-
tal conditions, and its visual system may change accord-
ingly. For example, the photoreceptors in the retina are 
mainly composed of cone cells before metamorphosis, 
while during metamorphosis the rod cells increase and 
become the main component of photoreceptors in pre-
metamorphic phase [28, 29]. However, visual character-
istics and the opsin expression pattern of turbot and their 
relationship to benthic life remain unknown. In the pre-
sent study, we investigated the selective pressure acting 
on turbot and eight other teleost species and conducted 
spectral tuning site and synteny analyses to evaluate the 
adaptive evolution of turbot visual opsin genes. We also 
investigated the heterochronic shifts during development 
of turbot. Results of this study enrich the understanding 
of sensory adaption in demersal fish.

Results
Phylogeny and syntenic analysis of turbot visual opsin
We obtained an unrooted visual opsin phylogenetic tree 
of turbot and eight other species constructed using the 
maximum-likelihood method (Fig.  1). The tree con-
firmed the identities of turbot opsin genes: RH1, SWS1, 
SWS2, RH2A1, RH2A2, RH2B1, RH2B2, RH2C, and LWS. 
Unlike other single-copy opsin genes, turbot have five 

Fig. 1 Phylogenetic relationships of the turbot opsin genes and 
other teleost opsin genes based on the maximum-likelihood method. 
The bootstrap test (1000 replicates) scores are shown on the nodes
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RH2 paralogs. Figure 2 shows the results of comparative 
synteny analyses among six selected teleost species. In 
general, opsin gene positions were conserved among tele-
osts. For example, the RH1 gene was typically positioned 
between the gene loci of prickle2a and ren. In addition 
to RH2C, four other RH2 genes of turbot were located 
in tandem on chromosome 6. By comparing the syntenic 
region containing RH2C, we found that although the 
genomic regions both downstream and upstream were 
otherwise maintained, RH2C was missing in the other 
five species (Fig. 2b). When we extended the analysis to 
all fish genomes that could be analyzed, the RH2C locus 
was still not found. Similarly, LWS-1, LWS-2, and LWS-
3 of guppy formed a tandem gene cluster, while LWS-4 
was located on chromosome LG21 (Fig.  2c). Addition-
ally, SWS1 was not present in the tongue sole genome 
(Fig. 2a).

Natural selection and spectral tuning sites analysis
To evaluate the selective constraints acting at the branch 
level in teleosts, branch-specific selection analysis was 
performed. In all cases of opsin genes, the free-ratio 
model provided a better fit, indicating the heterogeneity 

of ω values (nonsynonymous/synonymous rate ratio, 
ω = dN/dS) among branches (Table  1). For the branch-
site models, the test was conducted on a particular 
branch of the tree. The LRT comparisons between model 
A and the null model revealed several sites under posi-
tive selection on nine branches of the tree (red labeled 
branches in Fig. S1). These sites under episodes of posi-
tive selection are listed in Table  2. Among the lineages 
selected in the phylogenetic tree, only LWS lacked a 
positive selection site. Furthermore, positive results were 
found for all branches of zebrafish except LWS. Among 
all selected branches, the SWS2 branch of zebrafish had 
the most sites.

Based on amino acid multiple alignments, we sur-
veyed the main tuning sites involved in spectral sen-
sitivity. Tables  3, 4 show the results for RH2 and RH1, 
respectively, and the others are shown in Additional 
file 1: Tables S2–4. Asparagine (N) was present at site 83 
in five flatfish species, while the other teleost genomes 
had aspartic acid (D) in RH1; the other three sites have 
yet to be defined. With the exception of Atlantic halibut, 
the other four flounders all had changes of glutamic acid 
(E) to glutamine (Q) at site 122 and methionine (M) to 

Fig. 2 Synteny analyses of visual opsin genes between turbot and five other teleost species (tongue sole, medaka, zebra mbuna, zebrafish, and 
guppy). a SWS1, b RH2, c LWS and SWS2, d RH1. Different gene families are represented by colored pentagons, and the direction of the pentagon 
indicates gene orientation. The dashed lines indicate that two adjacent genes in that species are not directly linked
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leucine (L) at site 207 in RH2C. For SWS1, sites 46 and 
114 of turbot contained phenylalanine (F) and alanine 
(A), respectively, but serine (S) was present in those 

locations for the other four flatfish species. Moreover, in 
the b branch of SWS2 in the tree (Additional file 1: Fig. 
S1), all four species had the same amino acid substitution 

Table 1 Statistics of branch-specific model analysis of turbot and other teleost species

The likelihood ratio test is to determine whether the free ω model fits the data significantly better than the one ω model. The ω for each branch are not shown. lnL ln 
likelihood

Gene lnL (1ω model) lnL (free ω model) Likelihood ratio test P Values

LWS − 4964.165032 − 4922.267355 83.795354 < 0.001

SWS1 − 4253.724995 − 4240.774669 25.900652 0.0391

SWS2 − 8001.473925 − 7970.454002 62.039846 < 0.001

RH2 − 10,370.70927 − 10,296.73427 147.949996 < 0.001

RH1 − 3734.012013 − 3705.674753 56.67452 < 0.001

Table 2 Parameter estimates of branch-site models and predicted positively selected sites

lnL ln likelihood, LRT likelihood ratio test, – no positively selected sites

Opsin Clade lnL LRT P Positively selected sites

Null modelA

RH2 a − 10,169.10 − 10,169.10 0 1 –

b − 10,166.54 − 10,164.23 4.62 0.0315 19 (0.881) 31 (0.628) 95 (0.945) 109 (0.882) 122 (0.511) 169 (0.501) 207 (0.966) 266 
(0.604) 273 (0.949) 320 (0.578)

c − 10,169.10 − 10,169.10 0 1 –

d − 10,167.62 − 10,165.03 5.16 0.0230 105 (0.612) 217 (0.993)

e − 10,168.60 − 10,168.58 0.03 0.8636 –

f − 10,166.92 − 10,162.26 9.32 0.0022 49 (0.944) 95 (0.733) 270 (0.982) 307 (0.907)

g − 10,148.85 − 10,136.84 24.01 < 0.001 14 (0.875) 33 (0.514) 50 (0.946) 65 (0.770) 84 (0.948) 151 (0.523) 195 (0.951) 197 
(0.845) 198 (0.600) 217 (0.945) 239 (0.528) 254 (0.952) 286 (0.502) 290 (0.594) 297 
(0.581) 321 (0.757) 322 (0.966) 323 (0.990) 325 (0.979) 328 (0.649) 329(0.770) 330 
(0.772)

RH1 a − 3629.453904 − 3625.696675 7.51 0.0061 35 (0.769) 126 (0.674) 196 (0.858) 210 (0.879) 235 (0.911) 236 (0.959) 281 (0.773)

b − 3632.72 − 3632.72 0 1 –

c − 3632.72 − 3632.72 0 1 –

d − 3630.82 − 3630.82 4E-06 1 –

SWS2 a − 7840.16 − 7831.84 16.63 < 0.001 2 (0.572) 5 (0.605) 10 (0.815) 14 (0.801) 15 (0.575) 21 (0.841) 22 (0.579) 25 (0.507) 27 
(0.805) 42 (0.552) 44 (0.889) 45 (0.598) 51 (0.605) 55 (0.623) 87 (0.570) 88 (0.617) 
91 (0.567) 95 (0.613) 99 (0.510) 123 (0.556) 125 (0.539) 156 (0.601)162 (0.619) 166 
(0.598) 244 (0.600) 257 (0.600) 269 (0.670) 279 (0.604) 283 (0.853) 301 (0.685) 315 
(0.708) 328 (0.858)329 (0.818) 332 (0.577) 335 (0.596) 339 (0.533) 341 (0.545) 346 
(0.659) 349 (0.687)

b − 7851.02 − 7848.07 5.88 0.0152 38 (0.560) 99 (0.904) 276 (0.687) 299 (0.983)

c − 7852.17 − 7850.19 3.97 0.0463 18 (0.894)

d − 7852.21 − 7852.21 0 1 –

e − 7852.13 − 7852.10 0.06 0.8135 –

f − 7852.21 − 7851.96 0.50 0.4798 –

SWS1 a − 4194.06 − 4194.06 0 1 –

b − 4194.59 − 4193.82 1.54 0.2146 –

c − 4189.36 − 4185.92 6.87 0.0087 8 (0.895) 9 (0.860) 10 (0.788) 11 (0.765) 16 (0.704) 27 (0.895) 56 (0.678) 70 (0.888) 125 
(0.746) 145 (0.751) 185 (0.881) 194 (0.766) 263 (0.792) 342 (0.512)

LWS a − 4828.06 − 4828.06 0 1 –

b − 4828.06 − 4828.06 0 1 –

c − 4828.06 − 4828.06 0 1 –

d − 4828.06 − 4828.06 0 1 –
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of valine (V) for threonine (T) at site 99. We also found a 
turbot-specific amino acid site (122S) in SWS2.

Divergence time of turbot RH2 genes
The time that the turbot RH2 genes diverged was esti-
mated by MCMCTree using the soft fossil constraints 
method, and then we obtained an evolutionary path-
way (Fig.  3). We speculated that five RH2 genes were 
the product of several duplication events. The pro-
posed first divergence time was 166 (139–193) million 
years ago (Mya) in the Jurassic, which formed RH2A 

and RH2B/RH2C. The third divergence (about 71 Mya) 
created RH2B and RH2C. The divergence times of 
RH2A1/RH2A2 and RH2B1/RH2B2 were estimated to 
be 87 (51–128) and 34 (15–55) Mya, respectively. The 
divergence of RH2B1/RH2B2 was the latest one, and it 
occurred in the Tertiary.

Ontogenetic shift of opsin gene expression in turbot
In these experiments, expression levels of visual opsin 
genes in turbot at different developmental stages were 
determined by qPCR. Eight of the visual opsin genes were 
expressed at a low level at 0.5 and 18 months of age, but 
RH1 was highly expressed at 18 months of age. From 1 to 
9 months of age, RH1, SWS2, and SWS1 expression sig-
nificantly increased and LWS, RH2A1, RH2B2, and RH2C 
expression significantly decreased as turbot grew. No sig-
nificant change was detected in RH2A2 and RH2B1 gene 
expression throughout ontogeny from 1 to 9  months 
age (Fig.  4). From 4 to 18  months of age, RH1 expres-
sion maintained consistently at a high-level. The expres-
sion levels of SWS1 and SWS2 at 9 months of age could 
be twice as much as that at 1 month of age. However, the 
expression levels of them at 18  months of age are both 
very low. In the case of LWS, its expression level gradu-
ally decreased during the development of 4–18  months 
of age. Among the RH2 genes, RH2A1/RH2B2 and 
RH2A2/RH2B1 exhibited the same expression pattern 
throughout ontogeny, and the pattern for RH2C was 
close to that of RH2A2 and RH2B1. When we analyzed 
the proportional opsin gene expression of each cone 
opsin gene, we found that LWS, RH2B1, and RH2C were 
the three genes present in the highest proportions. The 
maximum LWS expression level was 53.9% at 1 month of 
age, while that of RH2B1 was 63.3% at 9 months of age. 
Thus, the dominant opsin shifted from LWS to RH2B1 
during turbot development (Table 5).

Table 3 Comparison of representative spectral tuning sites 
among teleost RH2 opsins

Marked in Italics are two positively selected sites of RH2C

Tuning site 97 122 207 292

Spotted halibut

 RH2B S E M A

 RH2C T Q L A

Barfin flounder

 RH2B S E M A

 RH2C T Q L A

Atlantic Halibut

 RH2 S E M A

Japanese flounder

 RH2A1 S Q M A

 RH2A2 T Q M A

 RH2B S E M A

 RH2C S Q L A

Turbot

 RH2A1 S Q L A

 RH2A2 T Q M A

 RH2B1 S E M A

 RH2B2 S E M A

 RH2C S Q L A

Cichlids

 RH2Aα S E M A

 RH2Aβ S E M A

 RH2B S Q M A

Medaka

 RH2A S Q M S

 RH2B S E M A

 RH2C S Q M A

Guppy

 RH2-1 S E M A

 RH2-2 S Q L A

Zebrafish

 RH2-1 C Q M A

 RH2-2 C Q M A

 RH2-3 T Q M A

 RH2-4 T E M A

Table 4 Comparison of representative spectral tuning sites 
among teleost RH1 opsins

Tuning site 83 122 261 292

Spotted halibut N E F A

Barfin flounder N E F A

Atlantic Halibut N E F A

Japanese flounder N E F A

Turbot N E F A

Medaka D E F A

Guppy D E F A

Cichlids D E F A

Zebrafish D E F A
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Fig. 3 An inferred evolutionary pathway of turbot RH2 genes. The number on each node of the dendrogram (left) represents a duplication event, 
whereas the right side shows the changes in RH2 gene orientations during evolution

Fig. 4 Visual opsin expression of turbot at different stages. Gene expression was measured by quantitative Real-Time PCR (qPCR) with the TB Green 
Premix Ex Taq assay, and mRNA expression levels of each gene were averaged over several individuals: 0.5 month [15 days post hatching (dph), 
n > 30], 1 month (30 dph, n > 30), 2.5, 4, 9, and 18 months (n = 3). Different letters represent statistically significant differences between stages 
(P < 0.05)
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Discussion
Molecular evolution of RH2 and RH1
Through phylogenetic analysis, we characterized the vis-
ual opsin genetic component of turbot. Five green opsin 
genes are present in the turbot genome, and this is the 
same number as Pacific bluefin tuna (Thunnus orientalis) 
[10, 30]. Our gene synteny analysis showed that RH2C 
was not in the same gene cluster as the other four RH2 
genes. In addition, the RH2C locus was absent in other 
teleost species analyzed in this study. Unfortunately, our 
gene synteny analysis failed to cover all species of fish, 
including some flatfish such as barfin flounder, spotted 
halibut, and Japanese flounder, so we do not know yet 
whether their RH2Cs are arranged in tandem with other 
RH2 genes on the chromosome. Additionally, despite 
the close genetic relationship of tongue sole, it lacks the 
RH2C locus. We predicted that RH2C might have origi-
nated from flatfish-specific duplication, after which it 
was translocated to chromosome 8 from chromosome 6 
in turbot. It is generally accepted that gene duplication 
may generate redundant genes, which is usually followed 
by degenerative mutations in one member of the pair and 
even gene loss [13, 31, 32]. Subsequently, some flatfish 
lineages lost RH2C, whereas other species such as turbot 
retained it.

We detected 10 positive selection sites of RH2C, 
and sites 122 and 207 are related to spectral sensitivity. 
In barfin flounder, the λmax of RH2C is blue shifted by 
approximately 16 nm compared to RH2B [33]. Addition-
ally, mutagenesis experiments in coelacanth indicated 
that both E122Q and M207L cause blue shifts of spectral 
peak absorbances [3, 34, 35]. Thus, we speculated that 
the λmax of RH2A1, RH2A2, and RH2C are blue shifted 
in turbot. Moreover, in turbot, multiple copies of RH2 
encode green opsins with different λmax, as is found in 
zebrafish and medaka [7, 8]. Different spectral peak 
absorbances are beneficial because they allow the fish to 
discriminate a wider spectrum of light. It may enhance 
color vision and contribute to prey detection in the bluish 

ocean [10]. Based on the loss of RH2A function in the 
genus Verasper [11] and our results showing low expres-
sion levels of RH2B2 and pairs of RH2A, we deduce that 
RH2B1 and RH2C are the higher expressed RH2 genes in 
turbot. Furthermore, the retention of RH2C is an adap-
tation of turbot to the spectral environment in the deep 
sea due to its shortwave-shift of λmax. Additionally, some 
studies have shown that opsin genes are tied to nuptial 
and body coloration [36, 37], but further work is required 
to confirm this function. Regarding the RH1 genes, all 
flatfish species studied herein have the substitution of 
D83N, which has been demonstrated to cause blue shift 
in cattle and chameleons [38]. However, this site was not 
positively selected. Therefore, whether this replacement 
is beneficial for benthic adaptation needs further study. 
For the other three sites, no differences were found in 
nine fish species [39–41].

Heterochronic changes in opsin gene expression
Heterochronic changes in a variety of traits have been 
reported, including opsin gene expression [15, 42–45]. 
A study of cichlids revealed that subfunctionalization 
of heterochronic changes in expression patterns is criti-
cal for preservation of opsin genes [46]. Furthermore, 
altering opsin expression patterns during ontogeny is an 
important mechanism for modulating color vision [14]. 
In order to adapt to different life cycle stages, organ-
isms show three patterns of heterochronic changes in 
opsin gene expression. For instance, in cichlid fishes, Nile 
tilapia showed a normal pattern of opsin gene expres-
sion that changes dynamically from a larval gene set to 
a final adult set. In contrast, cichlids from Lake Victo-
ria had only an adult gene set with little change through 
time (direct developing pattern), and rock dwellers from 
Lake Malawi had a reduced rate of change (neotenic pat-
tern) [15]. In the current study, we found a normal pat-
tern of visual opsin expression in turbot. Turbot undergo 
metamorphosis during growth and development, which 
is accompanied by changes in the spectral environment: 
the bright daylight and long wavelength spectrum envi-
ronment during the pelagic phase and the dim light and 
short to medium wavelength spectrum environment in 
the benthic phase. Transformation of light environments 
in turn might lead to shifts in opsin gene expression and 
spectral sensitivity [47]. Our results showed that tur-
bot undergo heterochronic shifts in opsin gene expres-
sion, which may alter spectral sensitivity and contribute 
to scotopic vision. Specifically, the increased expression 
level of RH1 is beneficial for vision in diminishing lumi-
nance when the fish moves to deeper waters. As for cone 
opsin genes, the highest proportional expression level 
of LWS at the early developmental stages was gradually 
replaced by RH2B1 at the later developmental stages 

Table 5 Proportional expression of cone opsin genes of turbot 
at different stages

Different letters represent statistically significant differences between stages 
(P < 0.05)

Age (month) LWS RH2B1 RH2C Other

0.5 47.98a 28.13a 16.12a 7.77a

1 53.85a 26.14a 13.29a 6.71ab

2.5 47.43a 34.13a 14.51a 3.93b

4 24.71b 53.39b 17.35a 4.55b

9 14.64c 63.27b 18.74a 3.35ab

18 29.22b 57.19b 11.22b 2.37b
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during ontogeny. This variation means that the visual 
sensitivity shifts from red to green during adaptation to 
the deep sea environment. Downregulation of LWS and 
upregulation of RH1 expression level were also found 
during development in barfin flounder [33]. Similarly, no 
rod photoreceptors were found in retinas of larval winter 
flounder (Pseudopleuronectes americanus), indicating no 
expression of RH1, whereas three types of photoreceptors 
with different λmax, including rods, were present in adult 
retinas. These results indicate increased RH1 expression 
and a shift in spectral sensitivity [47]. In our study of tur-
bot, we found low expression of cone opsins and a slight 
increase in proportional level of LWS at 18  months of 
age. At that stage, turbot completed metamorphosis and 
moved to deeper waters. Thus, color vision seems not to 
be important for turbot in the deep sea, and higher LWS 
expression may occur in preparation for reproduction.

Genetically based versus environmentally triggered 
variation
The developmental progression in opsin expression is 
strongly linked to shifts in spectral sensitivity, which 
is generally considered to be an adaptation strategy to 
ambient light changes that occur over the life cycle [14, 
15]. Studies on bluefin killifish (Lucania goodei) suggest 
lighting environment had large effects on opsin expres-
sion [20]. However, it is reported that opsin expression 
plasticity in cod larvae is controlled by developmental 
programme rather than ambient light [5]. It is not yet 
clear whether heterochronic shifts in opsin expression 
are genetically determined or environmentally triggered. 
Generally speaking, opsin expression should not need to 
change if there are no differences in the environmental 
spectrum. However, in the present study, we found that 
the turbot, which has been artificially domesticated for 
a long time, still showed variation of opsin expression in 
the same spectral environment during different develop-
mental stages. Earlier studies suggest that photoperiod 
manipulation has an impact on performance, matura-
tion and flesh quality in turbot [48, 49]. And our lab had 
showed the plasticity of vision and body development 
of turbot larvae under different light spectra [29]. It is a 
pity that we have no turbot in natural environments to be 
compared with, whether the variation of opsin expression 
is triggered by environmental factors needs further study.

The eye migration and evolutionary origin of flatfish 
asymmetry
Darwin had noticed the eye asymmetry of flatfish, but 
the evolutionary origin was unclear, because there are no 
transitional forms linking flatfishes to symmetrical rela-
tives. Thus, Darwin proposed a conjecture that invoked 
the inheritance of acquired traits like Lamarck’s theory 

of flatfish origins, to respond to early arguments against 
natural selection. Until the discovery of the extinct spiny-
finned fishes Amphistium and Heteronectes, which retain 
many primitive characters unknown in extant species. 
It indicates that the evolution of the eye asymmetry of 
flatfishes was gradual [50, 51]. At present, it is generally 
accepted that flatfishes (Pleuronectiformes) are mono-
phyletic groups [52, 53]. If it is true, important changes 
for adaptation to benthic lifestyle should be shared by 
Pleuronectiformes. Meanwhile, a fast adaptive radiation 
occurring ~  40 Mya may play a great role in evolution-
ary history of each family or species [30]. Our results of 
divergence time of turbot RH2 genes help provide refer-
ence points.

Conclusions
Our results indicate that evolutionary changes in gene 
sequences and heterochronic shifts in opsin expression 
are the main ways that turbot adapt to environmental 
photic variations from the pelagic to the benthic period. 
Specifically, the positive selection of E122Q and M207L 
of RH2C is closely related to a blue shift of the spectral 
peak absorbance, and RH2C may be an important green 
opsin gene retained by some flatfish species, including 
turbot, after gene duplication. In addition, spectral sen-
sitivities tuned by heterochronic shifts in opsin expres-
sion is another strategy to adapt to different ambient light 
spectra during the life cycle.

Methods
Phylogenetic and synteny analysis
To identify the visual opsin gene repertoire of turbot, 
zebrafish opsin sequences were used as BLASTp query 
sequences with e-value <  10−10, and they were down-
loaded from the chromosome of the reference genome 
[30]. Opsin sequences of four flatfish (spotted halibut, 
Verasper variegatus; Japanese flounder, Paralichthys 
olivaceus; barfin flounder, Verasper moseri, and Atlan-
tic halibut, Hippoglossus hippoglossus) and four fresh-
water species living in shallow water (zebrafish, Danio 
rerio; medaka, Oryzias latipes; guppy; and zebra mbuna, 
Maylandia zebra) were obtained from GenBank (Addi-
tional file  2) [10, 11, 33, 54, 55]. Phylogenetic relation-
ships among the visual opsin nucleotide sequences were 
inferred using MEGA 7 software [56] by applying the 
maximum-likelihood method [57] and Kimura two-
parameter model algorithm [58]. The reliability of tree 
topology was evaluated by bootstrap analysis with 1000 
replications and uniform rates among sites. Genomicus 
synteny [59] and Ensembl genome browsers were used to 
assess the syntenic regions between turbot and five other 
teleost genomes (tongue sole, Cynoglossus semilaevis; 
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Japanese medaka HNI; zebra mbuna; zebrafish, and 
guppy).

Branch and branch‑site test of selection
To estimate the differences in selection pressure between 
five benthic species and four shallow water pelagic spe-
cies, branch-specific models and branch-site models of 
maximum likelihood were implemented in the CODEML 
program of PAML4.9i [60]. Tree topologies of each gene 
obtained by neighbor-joining method were provided in 
Additional file 1: Fig. S1. First, we compared the one-ratio 
model and free-ratios model in the branch test of selec-
tion [61], to test whether positive selection is present. 
It attempted to investigate if different spectral environ-
ments have an impact on the evolution of opsin genes. 
We then compared null Model A against the alternative 
Model A in the branch-site test to determine whether 
there are positively selected sites was present. This step 
was tried to explore the differences in selection pres-
sure acted on not only branches but also sites of amino 
acids. Different sets of foreground lineages (the lineages 
selected for branch-site test) were marked with letters in 
each gene tree (Additional file 1: Fig. S1) [62]. The likeli-
hood ratio test (LRT) was used to compare all alternative 
models and their corresponding null models. The Bayes 
Empirical Bayes method was used to obtain the posterior 
probability of sites under positive selection [63].

Analysis of spectral tuning sites
Representative spectral tuning sites of amino acids were 
compared among the opsins of five benthic and four 
shallow water pelagic species. The sites obtained by site-
directed mutagenesis were referenced from a previous 
study [10, 38]. Amino acid sequence alignments were 
performed using ClustalX [64]. The number of amino 
acid sites was standardized to bovine rhodopsin, except 
for blue opsin, which was standardized to barfin flounder 
SWS2A.

Estimation of turbot RH2 divergence times
The divergence time of turbot RH2 genes was estimated 
by MCMCTREE within PAML4.9i [60, 65]. The neigh-
bor-joining tree of six species (turbot; Atlantic salmon, 
Salmo salar; fugu, Takifugu rubripes; common carp, 
Cyprinus carpio; lungfish, Neoceratodus forsteri, and rain-
bow trout) was acquired by MEGA 7 by neighbor-joining 
method. The fossil calibrations were adopted from Time-
Tree [66]. The tree topology and fossil calibrations were 
set as (((((((S.maximus_RH2B1, S.maximus_RH2B2), 
S.maximus_RH2C), T.rubripes_RH2), (S.maximus_
RH2A1, S.maximus_RH2A2)), (S.salar_RH2, O.mykiss_
RH2)) ‘> 1.86 < 2.27’, (C.carpio_RH2-1, C.carpio_RH2-2)) 

‘> 2.05 < 2.55’, N.forsteri_RH2). The RootAge was set as 
‘< 6.0’.

Quantification of turbot opsin RNA expression
Laval and juvenile turbot were bred from a captive pop-
ulation at Shenghang Aquatic Science and Technology 
Company (Weihai, Shandong Province, China). The light 
period was 14L:10D and all individuals for mRNA expres-
sion analysis were euthanized with 300 mg/L of MS-222 
(Sigma, Shanghai, China) between 9 and 12 am before 
being decapitated. The eyes were removed and immedi-
ately stored in liquid nitrogen until analyzed. Develop-
mental stage was determined on the basis of the position 
of the rotating eye external characters [28]. Specifically, 
the ages of the individuals used for analysis of hetero-
chronic shifts in opsin gene expression were: 0.5 month 
(15 days post hatch, larval stage), 1 month (metamorphic 
stage, the right eye has risen to the top of the head), 4, 
9 and 18 months (post-metamorphic stage, asymmetric, 
the body color has changed to silvery gray).

Total RNA was extracted using the RNA Isolation Kit 
(Vazyme Biotech Co, Nanjing, China). RNA purity and 
concentration were examined using a NanoDrop 2000 
spectrophotometer (Thermo Scientific, Shanghai, China), 
and RNA integrity was verified by gel electrophoresis. 
The PrimeScript RT reagent kit with gDNA Eraser was 
used to synthesize first-strand cDNA from 0.5 μg of total 
RNA (TaKaRa, Dalian, China). Using the Bio-Rad CFX 
Connect™ Real-Time PCR System (Bio-Rad, Hercules, 
CA, USA), quantitative real-time PCR (qPCR) was con-
ducted with TB Green Premix Ex Taq (TaKaRa) following 
the manufacturer’s protocol. Melting curves were plot-
ted to confirm amplification specificity. Using the  2−ΔΔCt 
method, the relative expression level of each opsin gene 
was normalized to β-actin, which was selected as the 
internal reference gene after evaluating the expression 
pattern of eight commonly used housekeeping genes [67]. 
Additional file 1: Table S1 shows the specific primers for 
qPCR. The PCR mixture (20 µL) contained 10 μL of TB 
Green Premix Ex Taq, 7.6 μL of PCR-grade water, 1.6 μL 
of cDNA, and 0.4 μL of each of the primers. The qPCR 
reaction was performed in triplicate with the program of 
95  °C for 3 min, followed by 40 cycles at 95  °C for 10 s, 
57/58 °C for 30 s, and 72 °C for 30 s. Proportional opsin 
expression was determined as a fraction by calculating 
the proportion of each cone opsin (Ti) relative to the total 
cone opsin expression (Tall) as follows:

Ti

Tall

=

1

(1+E1)
Cti

∑
1

(1+Ei)
Cti
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where Ei represents the PCR efficiency for each pair of 
primers and Cti is the critical cycle number for each gene 
[68, 69].

To assess significance of the change in opsin expres-
sion between different stages, the least significant dif-
ference (LSD) post hoc test with 95% confidence 
level was used. Data were analyzed using SPSS 23.0 
software. Relative expression data are shown as the 
mean ± standard deviation, and proportional expres-
sion data are shown as averages.
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