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Abstract 

Background: The mammalian testis is an important male exocrine gland and spermatozoa-producing organ that 
usually lies in extra-abdominal scrotums to provide a cooler environment for spermatogenesis and sperm storage. 
Testicles sometimes fail to descend, leading to cryptorchidism. However, certain groups of mammals possess inher-
ently ascrotal testes (i.e. testes that do not descend completely or at all) that have the same physiological functions as 
completely descended scrotal testes. Although several anatomical and hormonal factors involved in testicular descent 
have been studied, there is still a paucity of comprehensive research on the genetic mechanisms underlying the evo-
lution of testicular descent in mammals and how mammals with ascrotal testes maintain their reproductive health.

Results: We performed integrative phenotypic and comparative genomic analyses of 380 cryptorchidism-related 
genes and found that the mammalian ascrotal testes trait is derived from an ancestral scrotal state. Rapidly evolving 
genes in ascrotal mammals were enriched in the Hedgehog pathway—which regulates Leydig cell differentiation and 
testosterone secretion—and muscle development. Moreover, some cryptorchidism-related genes in ascrotal mam-
mals had undergone positive selection and contained specific mutations and indels. Genes harboring convergent/
parallel amino acid substitutions between ascrotal mammals were enriched in GTPase functions.

Conclusions: Our results suggest that the scrotal testis is an ancestral state in mammals, and the ascrotal phenotype 
was derived multiple times in independent lineages. In addition, the adaptive evolution of genes involved in testicular 
descent and the development of the gubernaculum contributed to the evolution of ascrotal testes. Accurate DNA 
replication, the proper segregation of genetic material, and appropriate autophagy are the potential mechanisms for 
maintaining physiological normality during spermatogenesis in ascrotal mammals. Furthermore, the molecular con-
vergence of GTPases is probably a mechanism in the ascrotal testes of different mammals. This study provides novel 
insights into the evolution of the testis and scrotum in mammals and contributes to a better understanding of the 
pathogenesis of cryptorchidism in humans.
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Background
The testis is a consequential male exocrine gland that 
produces spermatozoa and an endocrine gland that 
secretes sex hormones. For most mammals, both the 
testis and epididymis are located in the scrotum, which 
is outside of the body and protects the testis. The 
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multi-version ‘cooling hypothesis’ [1, 2] suggests that the 
scrotum provides an environment 2–4 °C cooler than the 
normal body temperature; germinal epithelium and sper-
matozoa are acutely sensitive to heat [3], so this environ-
ment is optimal for spermatogenesis and sperm storage 
[4–6].

Some other hypotheses have been raised to explain the 
evolutionary origin of testicular descent and the function 
of the scrotum—e.g. the ‘training hypothesis’ argues that 
the scrotum exposes the sperm to a hostile environment 
to “train” it for further fertilization [7], Portmann [8] con-
tends that the scrotum serves as a sexual signal in some 
mammals, and the ‘galloping hypothesis’ states that the 
scrotum originated in mammals that gallop or jump and 
protects spermatogenesis and sperm storage from conse-
quent fluctuations in intra-abdominal pressure [9, 10].

Cryptorchidism (from Greek, meaning “hidden tes-
ticle”) is a failure of the testis to descend into the scro-
tal sac. For mammals with completely descended testes 
(CDT), cryptorchidism is a developmental defect that 
causes severe dysfunctions such as germ cell maldevelop-
ment, asthenospermia, and imbalances in hormones such 
as testosterone (T) and anti-Müllerian hormone (AMH) 
[4]. Furthermore, cryptorchidism is associated with an 
increased risk of testicular malignancy and other diseases 
[5, 11]. Overall, cryptorchidism, a congenital malforma-
tion in most mammals, can affect normal male physi-
ological functions.

Anatomical and physiological adaptations of the scro-
tum—e.g. thin skin, no subcutaneous fat, absence of 
hair/fur, and cremaster muscle—keep the epididymis 
and testis cool to maintain male fertility and health [12]. 
However, some mammals possess natural and prop-
erly functioning undescended testes (testes that do not 
descend completely or at all). For example, the platypus 
(Ornithorhynchus anatinus), a monotreme, has high 
intra-abdominal undescended testes (UDT) in the same 
initial position as the ovary in females and does not 
develop a scrotum [13]. Most species in Afrotheria—e.g. 
elephant (Loxodonta africana), cape golden mole (Chrys-
ochloris asiatica), and manatee (Trichechus manatus 
latirostris)—have UDT [14–16], whereas the aardvark 
(Orycteropus afer afer) has incompletely descended tes-
tes (IDT) and lacks a scrotum [17]. In addition, armadillo 
(Dasypus novemcinctus; Xenarthra) and several lineages 
of Boreoeutheria (e.g. cetaceans, flying foxes, some pin-
nipeds, eulipotyphlans, and certain rodents) possess IDT 
[12].

In general, the CDT forms through a distinct and 
sequential two-phase descent [18], each phase of which 
involves multiple mechanical and hormonal factors. Dur-
ing the first phase, or the transabdominal phase, the testis 
is anchored to the inguinal region from a high abdominal 

position with the help of a swelling gubernaculum, the 
cranial suspensory ligament (CSL), T, and AMH [12, 19]. 
Early in the embryo development process, the gubernac-
ulum primarily consists of a mesenchymal core and mus-
cular outer layer, and has the potential to develop into a 
striated muscle bundle [20]. Later on, the gubernaculum 
can be found as a striated muscle bundle that eventually 
connects to the abdominal wall and scrotum [21, 22]. 
The gubernacular swelling reaction is mainly controlled 
by the insulin-like 3 protein (INSL3) and its receptor leu-
cine-rich repeat-containing G protein coupled receptor 8 
(RXFP2) [23].

During the second—or the inguino-scrotal—phase, the 
testis migrates into the scrotum. This process is regu-
lated by a combination of gubernaculum, testosterone, 
calcitonin gene-related peptide (CGRP) released by the 
genitofemoral nerve (GFN), and intra-abdominal pres-
sure [12, 24, 25]. A recent study associated the absence 
of testicular descent to the inactivation of INSL3 and 
RXFP2 in several UDT mammalian lineages like ten-
rec (Echinops telfairi), cape golden mole, cape elephant 
shrew (Elephantulus edwardii), and manatee [17]. How-
ever, the same study also showed that many other ascro-
tal mammals have full INSL3 and RXFP2 gene sequences, 
such as the elephant. This implies that the development 
and evolution of testicular descent in mammals likely 
involve  polygene. Overall, both the etiology of cryptor-
chidism and the genetic mechanisms related to the evo-
lution of testicular descent remain largely unknown.

This study analyzes cryptorchidism-related genes in 
mammals to investigate the mechanisms underlying 
developmental testicular descent and its adaptive impor-
tance in ascrotal mammals. This is important not only to 
understand the evolutionary mechanisms of testicular 
descent in mammals, but also to reveal the genetic mech-
anisms underlying cryptorchidism; thus, this study may 
be used to improve reproductive health in humans.

Results
Scrotal CDT is the ancestral state and was lost 
independently in many lineages
We used a recent species tree [26] to map the phenotypic 
states of testicular position and the presence of a scro-
tum. The mapping shows that the testis and scrotum phe-
notypes are diverse across mammals (Fig.  1, Additional 
file 1: Table S1). A comparison of the evolutionary mod-
els found that ARD (All Rates Different), which treats all 
rates as different during trait evolution, was the best fit-
ting model for testis and scrotum evolution in mammals 
(Additional file 1: Table S2). Reconstruction of the ances-
tral state suggested that scrotal CDT had a higher prob-
ability of appearing in deep ancestral nodes than did the 
undescended testis, e.g. the ancestor of mammals (node 
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1: 0.963), therians (node 2: 0.991), and placental mam-
mals (node 5: 0.999) (Fig.  1). Moreover, the testis and 
scrotum phenotypes recovered several shifts from scrotal 
CDT to ascrotal UDT in internal nodes within Afroth-
eria, and to the ascrotal IDT in certain ancestral nodes 
of rodents, e.g. in the respective ancestors of cetaceans, 
megabats, and pinnipeds, plus the ancestral nodes within 
Eulipotyphla (Fig. 1).

Molecular evolution of cryptorchidism‑related genes 
involved in testicular descent
Branch model analysis in PAML detected 36 genes that 
evolved significantly (adjusted p < 0.01) increased molec-
ular substitution rates in ascrotal IDT and UDT branches 
compared to CDT species (Fig.  2 and Additional file  1: 
Table  S3). Among them, substitution rates in ascrotal 
mammals were up to 10.7 times greater than they were 
in scrotal ones. In addition, 33 out of these 36 genes were 
still rapidly evolved in ascrotal species in an expanded 
62-mammal data set (Additional file 2: Fig S1), confirm-
ing the validity of the result (Additional file 1: Table S4). 

A further functional and pathway enrichment analysis 
revealed that 36 rapidly evolving genes were significantly 
enriched in the Hedgehog signaling pathway of Kyoto 
Encyclopedia of Genes and Genomes (KEGG) (Fig. 2 and 
Additional file 1: Table S5) and terms related to reproduc-
tive development (reproductive structure development, 
reproductive system development, male gonad develop-
ment, development of primary male sexual characteris-
tics, and male sex differentiation), muscle (muscle tissue 
development, striated muscle tissue development, and 
muscle organ development), and sex hormone receptors 
(protein-hormone receptor activity and hormone bind-
ing) of Gene Ontology (GO) (adjusted p < 0.05) (Fig.  2 
and Additional file 1: Table S6).

Next, we detected genes with increased substitu-
tion rates in UDT mammals, which evolved as the most 
unique and extreme case of testis-scrotum phenotype. 
Forty-six genes had rapidly evolved in UDT species 
(Additional file 2: Fig S2 and Additional file 1: Table S7).

Phylogenetic generalized least squares (PGLS) regres-
sion was applied to detect any potential relationship 
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Fig. 1 Evolution of testicular descent and the scrotum in mammals. Ancestral character states of the testis and scrotum were reconstructed using 
the ARD (All Rates Different) model. Each internal node in the phylogeny is numbered. UDT: undescended testis; IDT: incompletely descended testis; 
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between the evolutionary rates of cryptorchidism-
related genes and testicular descent. Thirteen genes 
were found to be significantly associated: MKX, 
TMEM74, BTBD1, SPPL2C, ATRX, NANOS1, AP3B2, 
IRF6, PRRG4, RAB3GAP2, DSCC1, EIF3A, and STS 
(Table  1). Among them, chromatin-remodeling pro-
tein ATRX is involved in transcriptional regulation and 
telomere replication [27]. The gene NANOS1 (Nanos 
C2HC-Type Zinc Finger 1), a member of the nanos 
family, is associated with spermatogenic impairment 
and translational regulation [28]. Further functional 
enrichment using GO annotations revealed terms 
related to sister chromatid cohesion (adjusted p < 0.05) 
(Additional file 1: Table S8 and Additional file 2: Fig S3).

We used a branch-site model to test positively 
selected genes and amino acids in ascrotal IDT and 
UDT mammals. Evidence of positive selection was 
found in 13 ascrotal mammal genes (FLNA, DOCK1, 
CSMD3, MCMBP, FANCE, FBXL18, ARMC4, DEP-
TOR, ACTA1, JAG1, AIMP2, RAF1, and CCDC73) 
(Table 2). Enrichment analysis indicated that the func-
tions of these 13 genes were significantly related to 
muscle (actin filament, sarcomere, contractile fiber 
part, myofibril, and contractile fiber), DNA replica-
tion (MCM complex), and GTPase (guanyl-nucleo-
tide exchange factor complex) after multiple testing 
(adjusted p < 0.05) (Additional file  2: Fig S4 and Addi-
tional file 1: Table S9).
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UDT species‑specific amino acid mutations and indels
We failed to detect any specific mutations in ascrotal 
mammals (UDT or IDT species), but we did success-
fully identify 17 specific substitutions in 14 proteins of 
UDT mammals (Fig. 3). The protein AMER1 had three 
specific substitutions, FAT1 had two, and the other 12 
proteins had one each. In addition, two indels were 
detected mainly in UDT mammals (Fig. 4): (1) a 108-bp 
deletion in AXIN1 caused a 36-amino-acid fragment to 
be missing in all the UDT mammals and a small num-
ber of the IDT and CDT species and (2) a six-bp-long 
deletion in all UDT and some CDT species.

Molecular convergence in ascrotal mammals
We initially observed convergent/parallel amino acid 
substitutions in 164 proteins in 176 IDT/UDT ascro-
tal branches (Additional file 1: Table S10 and Additional 
file  2: Fig S5). The Poisson test detected three parallel 
substitutions in the protein CPEB1 among different UDT 
branches, and 18 parallel changes were found in 13 pro-
teins—AHSA2, FHL3, GNRHR, PROSER2, RALBP1, 
SERTAD2, WDPCP, C15orf40, CDC42EP4, CDT1, 
CPEB1, PGLS, and WHAMM—among the IDT branches 
(Additional file  1: Table  S11). A functional enrich-
ment analysis found that these 13 genes were related to 
small GTPase functions, such as GTP-Rho binding, Rho 
GTPase binding, and GTPase activator activity (Addi-
tional file 1: Table S12 and Fig. 5).

Discussion
Most mammals have completely descended testes (CDT). 
Although the failure of testicular descent leads to cryp-
torchidism, certain groups of mammals possess incom-
pletely descended (IDT) or undescended testes (UDT) 
that function normally. The evolution of the scrotum and 
testicular descent in mammals has long been the subject 
of scientific interest in a wide range of fields, including 
medicine, developmental biology, and evolutionary biol-
ogy. However, little is known about this topic from an 
evolutionary perspective. Here, comparative genom-
ics and evolutionary analyses of cryptorchidism-related 
genes provide some novel evidence for the evolutionary 
trajectory of testicular descent and potential mechanisms 
driving normal physiological functions for IDT and UDT 
in mammals.

Table 1 Significant association between  evolutionary 
rates and testicular descent in PGLS

Gene p value r2 λ AIC

MKX 0.01324 0.1071 1 36.04678

TMEM74 0.01632 0.09785 1 38.47006

BTBD1 0.0198 0.09318 1 36.79198

SPPL2C 0.0232 0.08585 1 39.11798

ATRX 0.0271 0.08224 1 37.36731

NANOS1 0.0278 0.08136 1 37.41327

AP3B2 0.03493 0.07189 1 39.86059

IRF6 0.03691 0.07 1 39.95986

PRRG4 0.04599 0.06253 1 40.35212

RAB3GAP2 0.04605 0.06382 1 38.32113

DSCC1 0.04713 0.0617 1 40.39561

EIF3A 0.04778 0.06255 1 38.38645

STS 0.04994 0.06101 1 38.46501

Table 2 Positively selected genes and sites in ascrotal IDT and UDT mammals detected by branch-site model

† PPs of Bayes Empirical Bayes (BEB) analysis with P > 0.8 were regarded as amino acid candidates for selection

Gene 2∆ (lnL) p value (< 0.05) Adjusted p value
(< 0.05)

ω value Positively selected sites† (PP > 0.8)

FLNA 90.45473  < 0.0001  < 0.0001 19.77482 6 (0.902) 432 (0.859) 1115 (0.818) 1764 (0.876) 2058 (0.999) 2399 (0.912)

DOCK1 66.31111  < 0.0001  < 0.0001 3.01947 120 (0.948) 781 (0.899) 1817 (0.927)

CSMD3 45.53421  < 0.0001  < 0.0001 22.94946 391 (0.961) 2238 (0.874) 2314 (0.813) 3022 (0.934) 3105 (0.927) 3341 
(0.853) 3416 (0.828) 3565 (0.990)

MCMBP 23.477574  < 0.0001  < 0.0001 29.13722 190 (0.871) 249 (0.856) 273 (0.986) 401 (0.867)

FANCE 21.201804  < 0.0001  < 0.0001 4.29612 59 (0.818) 150 (0.994) 192 (0.998) 265 (0.863) 427 (0.896)

FBXL18 21.03184  < 0.0001  < 0.0001 33.89202 19 (0.980) 160 (0.813)

ARMC4 18.634242  < 0.0001 0.0007 4.42802 194 (0.917) 386 (0.931) 667 (0.877) 978 (0.950)

DEPTOR 18.15214  < 0.0001 0.0009 4.59605 184 (0.908)

ACTA1 17.687794  < 0.0001 0.0010 3.40263 93 (0.818) 302 (0.962)

JAG1 15.491652  < 0.0001 0.0028 4.20226 1006 (0.853) 1136 (0.926)

AIMP2 15.104846 0.0001 0.0032 22.04281

RAF1 13.280048 0.0003 0.0077 5.13164

CCDC73 11.117498 0.0009 0.0229 3.61345 418 (0.946) 440 (0.901) 826 (0.998) 1027 (0.966)
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The ascrotal testis evolved multiple times independently 
in mammals
It has been suggested that descended testes and the scro-
tum provide an optimal cooling environment for sper-
matogenesis and sperm storage, since they are cooler 
in temperature than the core body [1, 2, 29]. However, 
propitious testicular descent into the scrotum could be a 
sophisticated process that is physiologically, developmen-
tally, and evolutionarily costly [30]. Mammals evolved 
divergent scrotal CDT as well as ascrotal IDT and UDT. 
However, unlike in hard tissues, it is difficult to trace the 
evolutionary history of these organs because they do 
not fossilize. Nevertheless, inferring ancestral character 
states by mapping various phenotypes of living taxa onto 
a phylogeny could suggest the evolutionary trajectory of a 
certain trait [31].

Our ancestral state reconstruction showed that sev-
eral deep ancestors of mammals possessed scrotal CDT 

(Fig.  1). The derived characters of ascrotal IDT and 
UDT were inferred to occur in multiple lineages—e.g. 
Monotremata, Afrotheria, Cingulata, Rodentia, Chi-
roptera, Cetartiodactyla, Pinnipedia, and Eulipotyphla. 
Although Kleisner et  al. [15] and Lovegrove [16] sug-
gested that the scrotal testis is a derived state in mam-
mals, Werdelin and Nilsonne [14] and Sharma et  al. 
[17] argue that the scrotal CDT is the ancestral state 
and was subsequently lost in separate lineages. Over-
all, our reconstruction of the evolutionary history of 
testicular descent and the presence of the scrotum 
relied on a high order-level species coverage and well-
accepted phylogeny, providing more credible informa-
tion about the plesiomorphic scrotal testis in mammals. 
Moreover, the finding that the ascrotal testis evolved 
independently in mammals is a fascinating instance of 
convergent evolution.
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Genetic mechanisms driving the evolution of testicular 
descent in mammals
The two phases of testicular descent are regulated by a 
combination of mechanical and hormonal factors [18]. 
Dysplasia of the gubernacula, a pair of structures needed 
to steer the descent, yielded abnormal testicular descent. 
Previous studies have also found that mesenchymal, 
fibroblast, and muscle cells are involved in gubernaculum 
development [21, 22].

In the present study, we identified a series of rap-
idly evolving genes in ascrotal IDT and UDT mammals 
that were enriched in functions related to muscle and 
striated muscle development (Fig.  2, Additional file  1: 
Table S3, and Table S6). Positively selected genes in the 
group of ascrotal species were also overrepresented in 
GO terms related to muscular components (Additional 
file 1: Table S9 and Additional file 2: Fig S4). These find-
ings imply that evolutionary changes in genes related to 
the muscular gubernaculum were involved in testicular 
descent. This is similar to the finding from Barthold et al. 
[32] that the differentially expressed genes of the guber-
naculum in wild-type and cryptorchid rat fetuses were 
enriched in categories related to muscle development. 
Combined, this evidence suggests that muscle-related 
genes played some important role in the evolution of 

testicular descent in mammals, specifically by contribut-
ing to mechanical traction.

The process of testicular descent also involves a series 
of hormones. T, which is produced by Leydig cells, could 
induce CSL regression and cause the testis to descend 
into the first phase. More importantly, during the second 
phase, androgens (including T) are the predominant hor-
monal controllers [12]. Moreover, T plays a large role in a 
paracrine manner to stabilize the Wolffian ducts and fur-
ther systemically masculinize the external genitalia [33].

Desert hedgehog (Dhh) (Hedgehog protein family) has 
been reported to play an important role in regulating T 
secretion and testis development. Dhh is produced by 
Sertoli cells and can regulate the proliferation and dif-
ferentiation of Leydig cells and functions of T secretion 
[34, 35]. A missense mutation in the rat Hedgehog path-
way resulted in androgen deficiency and a decrease in the 
number of Leydig cells with impaired functions [36]. Our 
finding that the rapidly evolving genes in ascrotal mam-
mals were overrepresented in the Hedgehog signaling 
pathway (Fig. 2, Additional file 1: Table S3, and Table S5) 
aligns with the critical role of the Hedgehog signaling 
pathway in T secretion and testis development.
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Possible mechanisms for maintaining health in IDT 
and UDT mammals
The testis is a crucial producer of spermatozoa and sex 
hormones in males. However, cryptorchidism caused by 

testicular maldescent is a heterogeneous disorder asso-
ciated with not only the macroscopic abnormal location 
of testes, but also further postnatal abnormalities. For 
example, cryptorchidism is one of the most common 
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causes of infertility in men; it is characterized by depres-
sion of spermatogenesis [37] and reduction in the num-
ber of germ cells [38]. Abnormal autophagy [39] and 
DNA damage [40] were suggested to be involved in the 
impairment of spermatozoa in the cryptorchid testis. 
The present study uncovered several lines of evidence 
for strategies by which ascrotal IDT and UDT mammals 
keep normal reproductive capacity under “cryptorchid 
conditions.”

First, genes involved in spermatogenesis were asso-
ciated with healthy UDT. G1021V in the protein GLI1 
and E/S90N in KITLG were identified as UDT mammal-
specific amino acid mutations. The zinc finger transcrip-
tion factor GLI1 is a member of the GLI family, whose 
overexpression or mutation causes disease in humans 
and mice [41, 42]. There is evidence that GLI1 mediates 
Desert hedgehog (Dhh) signaling in male mouse testes 
during spermatogenesis [43]. The KIT/KITLG signaling 
system is essential for the proliferation, meiosis, migra-
tion, survival, and maturation of germ cells in testes [44, 
45]. It has been reported that polymorphisms in KITLG 
are likely associated with germ cell tumors [46]. Although 
residue 1021 of GLI1 is not located in a putative func-
tional region and nonsynonymous mutation of residue 
90 is an unreported polymorphism case, both might be 
targeted in response to spermatogenesis via unknown 
cis-regulations.

We also found that the genes ATRX and NANOS1, 
which function in spermatogenesis in the testis, evolved 
an association with testicular descent. ATRX (on the 
X-chromosome, responsible for alpha-thalassaemia and 
mental retardation) is believed to play a role in testicular 
development, since the majority of mutations in ATRX 
result in genital abnormalities [47]. Tang et al. [48] sug-
gested that ATRX might also contribute to adult sper-
matogenesis in human. Mutations in the gene NANOS1 
are associated with spermatogenic failure and oligoasthe-
noteratozoospermia [49].

Of the genes with UDT mammal-specific indels, 
T-complex 11 like 1 (TCP11L1) is involved in cryptor-
chidism. Seabra et  al. [50] described a cryptorchidism 
patient with azoospermia presenting a microdeletion at 
11p13 in TCP11L1. Liu et  al. [51] found that TCP11L1 
shares its functional domain with and has similar sub-
cellular localization to the TCP11 protein, suggesting 
that the two proteins have a similar role in spermatogen-
esis. Several studies have demonstrated that, similar to 
mutations and insertions, deletions in a protein region 
might enhance that protein’s molecular function if the 
region effects it; this also occurs with cis- or trans-acting 
regulation [52, 53]. It is likely that this unique deletion 
of TCP11L1 in UDT species enhances spermatogenic 

capability, but further functional assays are needed to 
confirm this.

Second, genes contributing to DNA repair and genome 
stability maintenance were found to be involved in poten-
tial mechanisms maintaining health in UDT mammals. 
Germ cells pass genetic information onto descendants, 
and this requires that replication is accurate and their 
genome is perfectly stable [54]. Obstacles to replication 
might cause genomic instability and cancer formation 
[55]. However, the physiological environment provided 
by the undescended testis challenges the enzymes and 
cellular mechanisms that appear to be well adapted to 
the lower temperature in the CDT [56]. We found that 
PMS2 possesses a UDT species-specific mutation at 
position 258. A previous study found that PMS2 plays 
a crucial role not only in the post-replicative DNA mis-
match repair system, but also in a process that induces 
cell cycle arrest and could lead to apoptosis in the case 
of major DNA damages—this is known as DNA damage 
signaling [57]. Along with DNA replication repair, sister 
chromatid cohesion in the meiotic process is another 
crucial mechanism for maintaining genome stability [58]. 
Our results showed that genes that evolved in associa-
tion with testicular descent were significantly enriched in 
functions that maintain sister chromatid cohesion (Addi-
tional file 1: Table S8 and Additional file 2: Fig S3), a bio-
logical process in which sister chromatids of a replicated 
chromosome become tethered to each other. Cohesion 
in eukaryotic cells appears to lie at the heart of the mei-
otic process because it is compulsory for the repair of 
recombinogenic lesions and for chromosome segregation 
in dividing cells during meiotic anaphase [59, 60].

Third, genes involved in autophagy might help main-
tain health in UDT mammals. Well-adjusted germ cell 
proliferation and death are highly ordered in testicu-
lar spermatogenesis [61, 62]. However, testicular heat-
ing suppresses spermatogenesis and leads to increasing 
germ cell degeneration and death [63, 64]. Autophagy 
involves a biological process of self-cannibalization via 
lysosomal degradation, namely nonapoptotic cellular 
demise [65]. Zheng et  al. [66] found that spermatogen-
esis was impaired in a surgery-induced cryptorchid 
mouse model; they also found cryptorchidism-induced 
autophagy and apoptosis synchronously promoting germ 
cell death. Notably, there have hardly been any reports of 
over-autophagy in naturally ascrotal mammals. There-
fore, we believe that, to maintain homeostasis in tes-
tes and germ cells, ascrotal species might adjust their 
autophagy levels to adapt to the high ambient tempera-
ture of the undescended testes. This is supported by the 
significant correlation of autophagy associated genes 
TMEM74 and RAB3GAP2 in the PGLS analysis and a 
rapidly evolving gene RAB7A in UDT mammals (Table 1 
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and Fig. 2). Transmembrane protein 74 (TMEM74) might 
be an important element promoting autophagy under cell 
stress conditions, because the knockdown of this gene 
hampers the cell’s autophagy function when starvation 
is imposed [67]. RAB3GAP2 and RAB7A are encoded by 
family members of RAB, which is a group of GTP-bind-
ing proteins that regulate vesicular transport. Both genes 
are involved in the autophagy pathway [68, 69].

Molecular convergence of the ascrotal IDT and UDT 
in GTPase
For decades, researches have demonstrated that pheno-
typic convergence can result from convergent molecular 
mechanisms [70]. In our study, phylogenetic reconstruc-
tion revealed that the ascrotal testis evolved in different 
mammalian lineages independently, and that this could 
be regarded as convergent evolution. Genes harboring 
convergent/parallel substitutions in the ascrotal mam-
mals were found to be significantly enriched in small 
GTPase-related terms (Additional file  1: Table  S12 and 
Fig.  5). Small GTPases are a large family of molecular 
switches that play a pivotal role in various cellular pro-
cesses [71]. Specifically, recent advances have suggested 
that Ras GTPases are involved in testicular descent 
[72]. Syndromes such as Noonan, Cardiofaciocutane-
ous, LEOPARD, and Costello, which are characterized 
as cryptorchidism, are RASopathies [72]. Moreover, 
GTPase-mediated signal transduction was identified 
in the functional analysis of the differentially expressed 
genes of wild-type and cryptorchid rats [32]. A previous 
study argues that Rho GTPases are critical for cytoskel-
etal reorganization and myogenesis [73]. This is consist-
ent with the roles of INSL3/RXFP2 and other candidate 
genes in regulating myogenesis and muscle development 
in the development of gubernaculum during testicular 
descent [32]. Hence, it could be hypothesized that small 
GTPases drive the convergent evolution of the ascrotal 
testis in different mammals, playing an important role in 
the development of gubernaculum via myogenesis.

Nevertheless, the development of testicular descent is a 
complicated process involving many genes and pathways. 
Future studies using genome-wide scans are needed to 
elucidate the molecules and mechanisms dictating the 
evolution of testicular descent in mammals and test the 
candidate genes by functional analyses. Additionally, 
primates, which have a relatively low prevalence in the 
evolutionary history of the Mammalia [74], were over-
represented in this analysis. A more precise and compre-
hensive sampling that is proportional to the distribution 
of species in the Mammalia class is needed to remedy any 
potential ascertainment bias in the present study.

Conclusions
Our study combined phenotypic evolution and com-
parative genomics investigations of 380 cryptorchidism-
related genes in mammals and found that the scrotal 
testis is the ancestral state in mammals and the ascro-
tal testis evolved multiple times independently. More 
importantly, the rapidly evolving and positively selected 
genes that we found suggest that the derived status of the 
ascrotal IDT and UDT phenotypes in mammals can be 
attributed to the adaptive evolution of genes involved in 
testicular descent and muscle development. Moreover, 
we demonstrated that accurate DNA replication, high 
genome stability, and appropriate autophagy are likely 
the mechanisms by which ascrotal mammals maintain 
normal spermatogenesis and physiological health. Our 
results suggest that small GTPases are associated with 
molecular mechanisms that contribute to the convergent 
phenotype of ascrotal testes in different mammals. Our 
study provides some novel insights into the evolution of 
testicular descent in mammals, contributes to a better 
understanding of the pathogenesis of cryptorchidism in 
humans, and offers further experimental validation for 
these candidate genes and residues.

Methods
Data collection
Data on the presence and testicular position of the 
scrotums of 62 representative mammals in the UCSC 
100-way multiple alignments (http://hgdow nload .soe.
ucsc.edu/downl oads.html) and the monotreme echidna 
(Tachyglossus aculeatus) were taken from publications 
(Additional file  1: Table  S1). Three categories of tes-
ticular position were classified: completely descended 
testis (CDT), incompletely descended testis (IDT), and 
undescended testis (UDT) (Fig.  1 and Additional file  1: 
Table  S1). 380 cryptorchidism-related protein coding 
genes screened from The Cryptorchidism Gene Database 
version 3 [75] were collected. Homologous exon align-
ments of these cryptorchidism-related genes were gath-
ered from UCSC human 100-way multiple alignments 
at http://genom e.ucsc.edu/. The entire transcripts were 
concatenated by exon-employing custom perl scripts. 
The longest transcript was retained for genes with mul-
tiple splice variants. To improve the quality of sequence 
alignments and subsequent evolutionary analyses, 
the nucleotide alignments were realigned by PRANK 
v.170427 in codon mode [76]. Sequences were then 
treated with Gblocks [77]. Incomplete codons and pre-
mature stop codons were prohibited. Based on the cri-
teria that (1) at least one representative species for each 
main mammalian order was chosen, (2) all the focused 
“cryptorchidism” (IDT + UDT) species were included, 
and (3) species with higher quality genomes were kept, 

http://hgdownload.soe.ucsc.edu/downloads.html
http://hgdownload.soe.ucsc.edu/downloads.html
http://genome.ucsc.edu/
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several CDT species which were mainly from the over-
represented primates were removed. Sequences from 49 
mammals (28 CDT species, 15 IDT, and 6 UDT species) 
covering 16 orders (Primates, Rodentia, Lagomorpha, 
Cetartiodactyla, Perissodactyla, Carnivora, Chiroptera, 
Eulipotyphla, Proboscidea, Sirenia, Afrosoricida, Mac-
roscelidea, Tubulidentata, Cingulata, Marsupialia, and 
Monotremata) (Additional file  1: Table  S1, Additional 
file  2: Fig S5) were used in the evolutionary analyses 
described below.

Ancestral state reconstruction
The discrete morphologies of the scrotum and testis used 
in this study for extant taxa were assigned according to 
previous studies (Additional file  1: Table  S1). Ancestral 
character reconstructions of mammalian scrotum pres-
ence and testis position were performed via the phy-
tools and ape packages in R statistical software [78, 79]. 
We first tested the fitness of the following models: Equal 
Rate model (ER): discrete character evolution in which 
a single parameter governs all transition rates; All Rates 
Different model (ARD): all possible transitions can occur 
at different rates; and Symmetrical Rates model (SYM): 
forward and reverse transitions share the same param-
eter. We then used the model with the best AIC score to 
reconstruct the ancestral state of mammalian scrotum 
presence and testis position. We used a well-supported 
mammal phylogeny from TimeTree (http://www.timet 
ree.org/) [26] as the input tree.

Selective pressure test
Rapidly evolved and positively selected genes generally 
contribute to adaptive evolution in response to new and 
changed environments [80]. To test whether heteroge-
neity in the evolutionary rates of cryptorchidism-related 
genes among mammals are correlated with different tes-
tis positions, we undertook a suite of analyses to detect 
differences in selection intensity and positive selection 
using codeml in the PAML package [81].

A false discovery rate (FDR) correction was applied 
to conservatively account for multiple testing. First, the 
branch model was recruited to examine ω (the ratio of 
nonsynonymous to synonymous substitution rates) val-
ues between each of two groups of branches. A nested 
model comparison between ascrotal and scrotal testis 
mammals—including a two-ratio model (in which scrotal 
and ascrotal mammals have different ω values) and a one-
ratio model (in which all mammals have one ω value)—
was used to evaluate rapidly evolving genes in ascrotal 
IDT and UDT mammals. Another branch-specific com-
parison was made between IDT and UDT species within 
ascrotal mammals.

Second, the branch-site model was used to detect posi-
tively selected genes and amino acids across the com-
bined IDT and UDT branches. The ω value was used to 
describe selection pressure: ω < 1, ω = 1, and ω > 1 indi-
cated purified selection, neutral evolution, and positive 
selection, respectively.

Association analysis between sequence evolution 
and phenotype
To investigate the potential relationship between gene 
evolutionary rates and testicular and scrotal evolution 
in mammals, we employed a PGLS regression in the 
caper package of R [82]. We used the root-to-tip ω value 
to access the evolutionary rate of each coding sequence 
because it contains more evolutionary history than does 
the terminal-branch ω value [83]. The free ratio model of 
the codeml program in PAML was used to estimate the 
ω values of internal and terminal branches. We used a 
binary state combination of the scrotal CDT and ascro-
tal IDT and UDT, with relevant characters shown in 
Additional file 1: Table S1. The lambda (λ) value, used as 
a quantitative measure of phylogenetic signals, was esti-
mated by the maximum likelihood method [84].

Shared specific amino acids and convergent/parallel 
substitutions in UDT species
Species-specific amino acid mutations and peptide frag-
ment indel (insertion and deletion) events have been 
inferred to be associated with functional, physiological, 
and phenotypic changes [85, 86]. For each amino acid site 
within a protein, the shared UDT species-specific muta-
tions refer to the amino acids along all UDT branches 
that are different from other species. The shared specific 
substitutions were identified by strict identity. To identify 
shared specific amino acid mutations in the UDT species, 
in-house perl scripts were employed on each column of 
the trimmed amino acid alignments.

It has been suggested that convergent phenotypes can 
be mediated by parallel and convergent amino acid sub-
stitutions [87–89]. Convergent substitution occurs when 
different amino acids at a specific amino acid site from 
two distantly-related branches converge, whereas paral-
lel substitution occurs when the same amino acid in two 
branches are derived from another same amino acid in 
independent ancestors [90]. Convergent/parallel amino 
acid substitutions in ascrotal branches were detected via 
the method described in Zou and Zhang [90].

For each gene, the ancestral node sequence was first 
reconstructed using the codeml program in the PAML 
package [81]. Second, a tree with branch lengths was 
extracted from the output file from the abovementioned 
calculation. Then, the relative evolutionary rates of all 
amino acid sites within one gene were calculated using 

http://www.timetree.org/
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the aaml model in codeml. The frequency of each amino 
acid at each site was counted for each gene. Using this 
method [90], all observed and expected cases of con-
vergent and parallel amino acid substitutions were cal-
culated under the recommended JTT-fgene matrix. We 
focused on and filtered the convergent/parallel substi-
tutions between each of two ascrotal branches. Finally, 
a Poisson test was employed to identify the significance 
between the observed and expected numbers of substitu-
tions in ascrotal branches.

Enrichment analysis
We used the over-representation tests enrichGO and 
enrichKEGG incorporated into clusterProfiler version 
3.6.0 [91] to analyze Gene Ontology (GO) and KEGG 
enrichment, respectively. Benjamini and Hochberg (BH) 
multiple test correction [92] was performed to adjust p 
values and decrease the likelihood of false positives.
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